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ABSTRACT
Process races occur when multiple processes access shared oper-
ating system resources, such as files, without proper synchroniza-
tion. We present the first study of real process races and the first
system designed to detect them. Our study of hundreds of appli-
cations shows that process races are numerous, difficult to debug,
and a real threat to reliability. To address this problem, we cre-
ated RACEPRO, a system for automatically detecting these races.
RACEPRO checks deployed systems in-vivo by recording live exe-
cutions then deterministically replaying and checking them later.
This approach increases checking coverage beyond the configu-
rations or executions covered by software vendors or beta testing
sites. RACEPRO records multiple processes, detects races in the
recording among system calls that may concurrently access shared
kernel objects, then tries different execution orderings of such sys-
tem calls to determine which races are harmful and result in fail-
ures. To simplify race detection, RACEPRO models under-specified
system calls based on load and store micro-operations. To reduce
false positives and negatives, RACEPRO uses a replay and go-live
mechanism to distill harmful races from benign ones. We have im-
plemented RACEPRO in Linux, shown that it imposes only modest
recording overhead, and used it to detect a number of previously
unknown bugs in real applications caused by process races.

Categories and Subject Descriptors:
D.2.4 [Software Engineering]: Software/Program Verification;
D.4.5 [Operating Systems]: Reliability

General Terms:
Design, Reliability, Verification

Keywords:
Record-replay, Debugging, Race Detection, Model Checking

1 Introduction
While thread races have drawn much attention from the research
community [9, 11, 30, 36, 38], little has been done for process
races, where multiple processes access an operating system (OS)
resource such as a file or device without proper synchronization.
Process races are much broader than time-of-check-to-time-of-use
(TOCTOU) races or signal races [39]. A typical TOCTOU race is an
atomicity violation where the permission check and the use of a re-
source are not atomic, so that a malicious process may slip in. A
signal race is often triggered when an attacker delivers two signals
consecutively to a process to interrupt and reenter a non-reentrant
signal handler. In contrast, a process race may be any form of race.
Some real examples include a shutdown script that unmounts a file
system before another process writes its data, ps | grep X shows N
or N + 1 lines depending on the timing of the two commands, and
make -j failures.

To better understand process races, we present the first study of
real process races. We study hundreds of real applications across
six Linux distributions and show that process races are numerous
and a real threat to reliability and security. For example, a simple
search on Ubuntu’s software management site [2] returns hundreds
of process races. Compared to thread races that typically corrupt
volatile application memory, process races are arguably more dan-
gerous because they often corrupt persistent and system resources.
Our study also reveals that some of their characteristics hint towards
potential detection methods.

We then present RACEPRO, the first system for automatically de-
tecting process races beyond TOCTOU and signal races. RACEPRO
faces three key challenges. The first is scope: process races are
extremely heterogeneous. They may involve many different pro-
grams. These programs may be written in different programming
languages, run within different processes or threads, and access di-
verse resources. Existing detectors for thread or TOCTOU races are
unlikely to work well with this heterogeneity.

The second challenge is coverage: although process races are
numerous, each particular process race tends to be highly elusive.
They are timing-dependent, and tend to surface only in rare exe-
cutions. Arguably worse than thread races, they may occur only
under specific software, hardware, and user configurations at spe-
cific sites. It is hopeless to rely on a few software vendors and beta
testing sites to create all possible configurations and executions for
checking.

The third challenge is algorithmic: what race detection algorithm
can be used for detecting process races? Existing algorithms as-
sume well-defined load and store instructions and thread synchro-
nization primitives. However, the effects of system calls are of-
ten under-specified and process synchronization primitives are very
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different from those used in shared memory. For instance, what
shared objects does execve access? In addition to reading the
inode of the executed binary, an obvious yet incomplete answer,
execve also conceptually writes to /proc, which is the root cause
of the ps | grep X race (§5). Similarly, a thread-join returns only
when the thread being waited for exits, but wait may return when
any child process exits or any signal arrives. Besides fork-wait,
processes can also synchronize using pipes, signals, ptrace, etc.
Missing the (nuanced) semantics of these system calls can lead to
false positives where races that do not exist are mistakenly identi-
fied and, even worse, false negatives where harmful races are not
detected.

RACEPRO addresses these challenges with four ideas. First, it
checks deployed systems in-vivo. While a deployed system is run-
ning, RACEPRO records the execution without doing any checking.
RACEPRO then systematically checks this recorded execution for
races offline, when the deployed system is idle or by replicating the
execution to a dedicated checking machine. By checking deployed
systems, RACEPRO mitigates the coverage challenge because all
user machines together can create a much larger and more diverse
set of configurations and executions for checking. Alternatively, if
a configuration or execution never occurs, it is probably not worth
checking. By decoupling recording and checking [7], RACEPRO
reduces its performance overhead on the deployed systems.

Second, RACEPRO records a deployed system as a system-wide,
deterministic execution of multiple processes and threads. RACE-
PRO uses lightweight OS mechanisms developed in our previous
work [17] to transparently and efficiently record nondeterministic
interactions such as related system calls, signals, and shared mem-
ory accesses. No source code or modifications of the checked ap-
plications are required, mitigating the scope challenge. Moreover,
since processes access shared OS resources through system calls,
this information is recorded at the OS level so that RACEPRO can
use it to detect races regardless of higher level program semantics.

Third, to detect process races in a recorded execution, RACE-
PRO models each system call by what we call load and store micro-
operations to shared kernel objects. Because these two operations
are well-understood by existing race detection algorithms, RACE-
PRO can leverage these algorithms, mitigating the algorithmic chal-
lenge. To reduce manual annotation overhead, RACEPRO auto-
matically infers the micro-operations a system call does by track-
ing how it accesses shared kernel objects, such as inodes. Given
these micro-operations, RACEPRO detects load-store races when
two concurrent system calls access a common kernel object and at
least one system call stores to the object. In addition, it detects wait-
wakeup races such as when two child processes terminate simulta-
neously so that either may wake up a waiting parent. To our knowl-
edge, no previous algorithm directly handles wait-wakeup races.

Fourth, to reduce false positives and negatives, RACEPRO uses
replay and go-live to validate detected races. A race detected based
on the micro-operations may be either benign or harmful, depend-
ing on whether it leads to a failure, such as a segmentation fault
or a program abort. RACEPRO considers a change in the order of
the system calls involved in a race to be an execution branch. To
check whether this branch leads to a failure, RACEPRO replays the
recorded execution until the reordered system calls then resumes
live execution. It then runs a set of built-in or user-provided check-
ers on the live execution to detect failures, and emits a bug report
only when a real failure is detected. By checking many execution
branches, RACEPRO reduces false negatives. By reporting only
harmful races, it reduces false positives.

We have implemented RACEPRO in Linux as a set of kernel
components for record, replay, and go-live, and a user-space explo-

ration engine for systematically checking execution branches. Our
experimental results show that RACEPRO can be used in produc-
tion environments with only modest recording overhead, less than
2.5% for server and 15% for desktop applications. Furthermore, we
show that RACEPRO can detect 10 real bugs due to process races in
widespread Linux distributions.

This paper is organized as follows. §2 presents a study of pro-
cess races and several process race examples. §3 presents an
overview of the RACEPRO architecture. §4 describes the execu-
tion recording mechanism. §5 describes the system call modeling
using micro-operations and the race detection algorithm. §6 de-
scribes how replay and go-live are used to determine harmful races.
§7 presents experimental results. §8 discusses related work. Fi-
nally, §9 presents some concluding remarks and directions for fu-
ture work.

2 Process Race Study
We conducted a study of real process races with two key questions
in mind. First, are process races a real problem? Second, what
are their characteristics that may hint towards how to detect them?
We collected bugs from six widespread Linux distributions, namely
Ubuntu, RedHat, Fedora, Gentoo, Debian, and CentOS. For each
distribution, we launched a search query of “race” on the distri-
bution’s software management website. We manually examined a
random sample of the returned pages, identified all unique bugs in
the sampled pages, and classified these bugs based on whether they
resulted in process or thread races. Raw data of the studied bugs is
available [1]. §2.1 presents our findings. §2.2 describes four pro-
cess race examples from the most serious to the least.

2.1 Findings

Table 1 summarizes the collected pages and bugs; Fedora and Red-
hat results are combined as they share the same management web-
site. For each distribution, we show the number of pages returned
for our query (Returned), the number of pages sampled and man-
ually examined (Sampled), the number of process races (Process)
and the subset of which were TOCTOU races, the number of thread
races (Thread), and the total number of bugs in the sampled pages
(Total).
Process races are numerous. Of the 150 sampled bugs, 109 re-
sulted in process races, a dominating majority; the other 41 bugs
resulted in thread races. However, thread races are likely under-
represented because the websites we searched are heavily used by
Linux distribution maintainers, not developers of individual appli-
cations. Of the 109 process races, 84 are not TOCTOU races and
therefore cannot be detected by existing TOCTOU detectors. Based
on this sample, the 7,498 pages that our simple search returned may
extrapolate to over 1,500 process races. Note that our counting
is very conservative: the sampled pages contain an additional 58
likely process races, but the pages did not contain enough informa-
tion for us to understand the cause, so we did not include them in
Table 1.

Distribution Pages Bugs
Returned Sampled Total Process Thread

Ubuntu 3330 300 45 42 (1) 3
Fedora/RedHat 1070 100 52 30 (10) 22

Gentoo 2360 60 31 23 (10) 8
Debian 768 40 17 12 (4) 5
CentOS 1500 40 5 2 (0) 3

Total 9028 540 150 109 (25) 41

Table 1: Summary of collected pages and bugs.
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Figure 1: Process races breakdown by effects.

Process races are dangerous. Compared to thread races that typ-
ically corrupt volatile application memory, process races are ar-
guably more dangerous because they often corrupt persistent and
system resources. Indeed, the sampled process races caused secu-
rity breaches, files and databases to become corrupted, programs to
read garbage, and processes to get stuck in infinite loops. Figure 1
summarizes the effects of all process races from Table 1.
Process races are heterogeneous. The sampled process races
spread across over 200 programs, ranging from server applications
such as MySQL, to desktop applications such as OpenOffice, to
shell scripts in Upstart [4], an event-driven replacement of System
V init scripts. Figure 2 breaks down the process races by pack-
ages, processes, and programming languages involved. Over half
of the 109 process races, including all examples described in §2.2,
require interactions of at least two programs. These programs are
written in different programming languages such as C, Java, PHP,
and shell scripts, run in multiple processes, synchronize via fork
and wait, pipes, sockets, and signals, and access resources such as
files, devices, process status, and mount points.

This heterogeneity makes it difficult to apply existing detection
methods for thread races or TOCTOU races to process races. For in-
stance, static thread race detectors [11] work only with one program
written in one language, and dynamic thread race detectors [38]
work only with one process. To handle this heterogeneity, RACE-
PRO’s race detection should be system-wide.
Process races are highly elusive. Many of the process races,
including Bug 1 and 3 described in §2.2, occur only due to site-
specific software, hardware, and user configurations. Moreover,
many of the sampled process races, including all of those described
in §2.2, occur only due to rare runtime factors. For example, Bug
1 only occurs when a database shutdown takes longer than usual,
and Bug 2 only occurs when a signal is delivered right after a child
process exited. These bugs illustrate the advantage of checking de-
ployed systems, so that we can rely on real users to create the di-
verse configurations and executions to check.
Process race patterns. Classified by the causes, the 109 process
races fall into two categories. Over two thirds (79) are execution

order violations [20], such as Bug 1, 3, and 4 in §2.2, where a
set of events are supposed to occur in a fixed order, but no syn-
chronization operations enforce the order. Less than one third (30)
are atomicity violations, including all TOCTOU bugs; most of them
are the simplest load-store races, such as Bug 2 in §2.2. Few pro-
grams we studied use standard locks (e.g., flock) to synchronize
file system accesses among processes. These patterns suggest that a
lockset-based race detection algorithm is unlikely to work well for
detecting process races. Moreover, it is crucial to use an algorithm
that can detect order violations.

2.2 Process Race Examples

Bug 1: Upstart-MySQL. mysqld does not cleanly terminate dur-
ing system shutdown, and the file system becomes corrupted. This
failure is due to an execution order violation where S20sendsigs,
the shutdown script that terminates processes, does not wait long
enough for MySQL to cleanly shutdown. The script then fails to
unmount the file system which is still in use, so it proceeds to re-
boot the system without cleanly unmounting the file system. Its
occurrence requires a combination of many factors, including the
mixed use of Systems V initialization scripts and Upstart, a miscon-
figuration so that S20sendsigs does not wait for daemons started
by Upstart, insufficient dependencies specified in MySQL’s Upstart
configuration file, and a large MySQL database that takes a long
time to shut down.
Bug 2: dash-MySQL. The shell wrapper mysql_safe of the
MySQL server daemon mysqld goes into an infinite loop with
100% CPU usage after a MySQL update. This failure is due to
an atomicity violation in dash, a small shell Debian uses to run
daemons [3]. It occurs when dash is interrupted by a signal unex-
pectedly. Figure 3 shows the event sequence causing this race. To
run a new background job, dash forks a child process and adds it
to the job list of dash. It then calls setjmp to save an execution
context and waits for the child to exit. After the child exits, wait
returns, and dash is supposed to remove the child from the job list.
However, if a signal is delivered at this time, dash’s signal handler
will call longjmp to go back to the saved context, and the sub-
sequent wait call will fail because the child’s exit status has been
collected by the previous wait call. The job list is still not empty, so
dash gets stuck waiting for the nonexistent child to exit. Although
this bug is in dash, it is triggered in practice by a combination of
dash, the mysql_safe wrapper, and mysqld.
Bug 3: Mutt-OpenOffice. OpenOffice displays garbage when a
user tries to open a Microsoft (MS) Word attachment in the Mutt
mail client. This failure is due to an execution order violation when
mutt prematurely overwrites the contents of a file before OpenOf-
fice uses this file. It involves a combination of Mutt, OpenOffice, a
user configuration entry in Mutt, and the openoffice shell script
wrapper. The user first configures Mutt to use the openoffice
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Figure 2: Process races breakdown. X axis shows the number of software packages, processes, or programming languages involved. Y axis
shows the percentage of process races that involve the specific number of packages, processes, or languages. To avoid inflating the number
of processes, we count a run of a shell script as one process. (Each external command in a script causes a fork.)
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child = fork()
setjmp(loc)
p = wait(. . .) [blocks. . .]
. . . // ← child exits
p = wait(. . .) [. . .returns]
. . . // ← signaled
longjmp(loc)
p = wait(. . .) // error (no child)

Figure 3: dash-MySQL race.

fd = open(H,RDONLY);
read(fd, buf, . . .);
close(fd);
. . . // update buf
. . . // do work
fd = open(H,WRONLY|TRUNC);
write(fd, buf, . . .);
close(fd);

Figure 4: bash race.

wrapper to open MS Word attachments. To show an attachment,
mutt saves the attachment to a temporary file, spawns the config-
ured viewer in a new process, and waits for the viewer process to
exit. The openoffice wrapper spawns the actual OpenOffice bi-
nary and exits at once. mutt mistakes this exit as the termination
of the actual viewer, and overwrites the temporary file holding the
attachment with all zeros, presumably for privacy reasons.
Bug 4: bash. The bash shell history is corrupted. This failure is
due to an atomicity violation when multiple bash shells write con-
currently to .bash_history without synchronization. When bash
appends to the history file, it correctly uses O_APPEND. However, it
also occasionally reads back the history file and overwrites it, pre-
sumably to keep the history file under a user-specified size. Fig-
ure 4 shows this problematic sequence of system calls. bash also
runs this sequence when it exits. When multiple bash processes
exit at the same time, the history file may be corrupted.

3 Architecture Overview
RACEPRO is designed to automatically detect process races using
the workflow shown in Figure 5. It consists of three steps, the first
of which runs on the deployed system, while the latter two can run
elsewhere on a separate replay system to avoid any performance
impact on the deployed system. First, a recorder records the execu-
tion of a deployed system while the system is running and stores the
recording in a log file. Second, an explorer reads the log and de-
tects load-store and wait-wakeup races in the recorded execution.
Third, each race is validated to determine if it is harmful. An exe-
cution branch of the recorded execution corresponding to each race
is computed by systematically changing the order of system calls
involved in the race. For each execution branch, a modified log is
constructed that is used to replay execution with the changed order
of system calls. A replayer replays the respective modified log up
to the occurrence of the race, then causes it to resume live execu-
tion from that point onward. A set of built-in and user-provided
checkers then check whether the execution results in misbehavior
or a failure such as a segmentation fault. By examining the effects
of a live execution, we distinguish harmful races from false or be-

nign ones, thus reducing false positives [25, 30]. The live part of
the re-execution is also recorded, so that users can deterministically
replay detected bugs for debugging.

Figure 6 shows the RACEPRO architecture used to support its
workflow. Of the four main architectural components, the recorder
and the replayer run in kernel-space, and the explorer and checkers
run in user-space. We will describe how RACEPRO records exe-
cutions (§4) and detects (§5) and validates (§6) races using these
components.

4 Recording Executions
RACEPRO’s record-replay functionality builds on our previous
work on lightweight OS-level deterministic replay on multiproces-
sors [17]. This approach provides four key benefits for detecting
process races. First, RACEPRO’s recorder can record the execu-
tion of multiple processes and threads with low overhead on a de-
ployed system so that the replayer can later deterministically replay
that execution. This makes RACEPRO’s in-vivo checking approach
possible by minimizing the performance impact of recording de-
ployed systems. Second, RACEPRO’s record-replay is application-
transparent; it does not require changing, relinking, or recompil-
ing applications or libraries. This enables RACEPRO to detect pro-
cess races that are extremely heterogeneous involving many dif-
ferent programs written in different program languages. Third,
RACEPRO’s recorder operates at the OS level to log sufficiently
fine-grained accesses to shared kernel objects so that RACEPRO’s
explorer can detect races regardless of high-level program seman-
tics (§5). Finally, RACEPRO’s record-replay records executions
such that it can later transition from controlled replay of the record-
ing to live execution at any point. This enables RACEPRO to dis-
tinguish harmful races from benign ones by allowing checkers to
monitor an application for failures (§6.2).

To record the execution of multiprocess and multithreaded ap-
plications, RACEPRO records all nondeterministic interactions be-
tween applications and the OS and saves the recording as a log file.
We highlight how key interactions involving system calls, signals,
and shared memory are handled.
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Figure 5: RACEPRO Workflow. Thin solid lines represent recorded
executions; thick solid lines represent replayed executions. Dashed
arrows represent potentially buggy execution branches. The dotted
thick arrow represents the branch RACEPRO selects to explore.
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Object Description
inode file, directory, socket, pipe, tty, pty, device
file file handle of an open file

file-table process file table
mmap process memory map
cred process credentials and capabilities, e.g., user ID

global system-wide properties (e.g., hostname, mounts)
pid process ID (access to process and /proc)

ppid parent process ID (synchronize exit/getppid)

Table 2: Shared kernel objects tracked.

System calls. Unlike previous work [15, 31] that records and re-
plays a total order of system calls, RACEPRO records and replays a
partial order of system calls for speed. RACEPRO enforces no or-
dering constraints among system calls during record-replay unless
they access the same kernel object and at least one of them modi-
fies it, such as a write and a read on the same file. In that case,
RACEPRO records the order in the kernel in which the object is ac-
cessed by the system calls and later replays the exact same order
of accesses. This is done by piggybacking on the synchronization
code that the kernel already has for serializing accesses to shared
objects. These tracked accesses also help detect process races in a
recorded execution (§5).

Table 2 lists the kernel objects tracked by RACEPRO. Most of
the entries correspond one-to-one to specific low-level kernel re-
sources, including inodes, files, file-tables, memory maps, and pro-
cess credentials. The global entry corresponds to system-wide ker-
nel objects, such as the hostname, file system mounts, system time,
and network interfaces. For each such system-wide resource there
is a unique global kernel object used to track accesses to that re-
source. The last two entries in the table, pid and ppid, provide a
synchronization point to track dependencies on process states. For
example, the pid entry of a process is used to track instances where
the process is referenced by another process, e.g., through a sys-
tem call that references the process ID or through the /proc file
system. The ppid entry is used to track when an orphan process
is re-parented, which is visible through the getppid system call.
Both pid and ppid correspond to identifiers that are visible to pro-
cesses but cannot be modified explicitly by processes.

The recorder only tracks kernel objects whose state is visible to
user-space processes, either directly or indirectly. For example, in-
ode state is accessible via the system call lstat, and file-table state
is visible through resolving of file descriptor in many system calls.
RACEPRO does not track accesses to kernel objects which are en-
tirely invisible to user-space. This avoids tracking superfluous ac-
cesses that may pollute the race detection results with unnecessary
dependencies. For example, both the fork and exit system calls
access the kernel process table, but the order is unimportant to user-
space. It only matters that the lifespan of processes is observed cor-
rectly, which is already tracked and enforced via the pid resource.
If RACEPRO tracked accesses to the kernel process table, it would
mistakenly conclude that every two fork system calls are “racy”
because they all modify a common resource (§5). One complication
with this approach is that if the kernel object in question controls
assignment of identifiers (e.g., process ID in the fork example), it
may assign different identifiers during replay because the original
order of accesses is not enforced. To address this problem, RACE-
PRO virtualizes identifiers such as process IDs to ensure the same
values are allocated during replay as in the recording.
Signals. Deterministically replaying signals is hard since they
must be delivered at the exact same instruction in the target exe-
cution flow as during recording. To address this problem, RACE-

PRO uses sync points that correspond to synchronous kernel entries
such as system calls. Sending a signal to a target process may occur
at any time during the target process’s execution. However, RACE-
PRO defers signal delivery until sync points occur to make their tim-
ing deterministic so they are easier to record and replay efficiently.
Unlike previous approaches, sync points do not require hardware
counters or application modifications, and do not adversely impact
application performance because they occur frequently enough in
real server and desktop applications due to OS activities.
Shared memory. RACEPRO combines page ownership with sync
points to deterministically record and replay the order of shared
memory accesses among processes and threads. Each shared mem-
ory page is assigned an owner process or thread for some time in-
terval. The owner can exclusively modify that page during the in-
terval and treat it like private memory, avoiding the need to track
all memory accesses during such ownership periods. Transitioning
page ownership from one process or thread to another is done us-
ing a concurrent read, exclusive write (CREW) protocol [10, 19].
To ensure that ownership transitions occur at precisely the same lo-
cation in the execution during both record and replay, RACEPRO
defers such transitions until the owner reaches a sync point. When
a process tries to access an owned page, it triggers a page fault,
notifies the owner, and blocks until access is granted. Conversely,
each owner checks for pending requests at every sync point and,
if necessary, gives up ownership. Page faults due to the memory
interleaving under the CREW protocol are synchronous kernel en-
tries that deterministically occur on replay and hence are also used
as sync points.

5 Detecting Process Races
RACEPRO flags a set of system calls as a race if (1) they are con-
current and therefore could have executed in a different order than
the order recorded, (2) they access a common resource such that re-
ordering the accesses may change the outcome of the execution. To
determine whether a set of system calls are concurrent, RACEPRO
constructs a happens-before [18] graph for the recorded execution
(§5.1). To determine whether a set of system calls access common
resources, RACEPRO obtains the shared kernel resources accessed
by system calls from the log file and models the system calls as load
and store micro-operations (§5.2) on those resources. RACEPRO
then runs a set of happens-before based race detection algorithms
to detect load-store and wait-wakeup races (§5.3).

5.1 The Happens-Before Graph

We define a partial ordering on the execution of system calls called
inherent happens-before relations. We say that system call S1 in-
herently happens-before system call S2 if (1) S1 accesses some re-
source before S2 accesses that resource, (2) there is a dependency
such that S2 would not occur or complete unless S1 completes, and
(3) the dependency must be inferable from the system call seman-
tics. For example, a fork that creates a child process inherently
happens-before any system call in the child process, and a write
to a pipe inherently happens-before a blocking read from the pipe.
On the other hand, there is no inherent happens-before relation be-
tween a read and subsequent write to the same file.

RACEPRO constructs the happens-before graph using only inher-
ent happens-before relations, as they represent the basic constraints
on the ordering of system calls. Given a recorded execution, RACE-
PRO constructs a happens-before graph for all recorded system call
events by considering pairs of such events. If two events S1 and
S2 occur in the same process and S2 is the next system call event
that occurs after S1, RACEPRO adds a directed edge S1 → S2 in
the happens-before graph. If two events S1 and S2 occur in two

357



getdentsgetdents

fork

P1: shellP1: shell

P2: psP2: ps

P3: grepP3: grep

pipe exit

exitfork

[1, , ][1, , ] [2, , ][2, , ] [3, , ][3, , ] [4, , ][4, , ] [5, , ][5, , ] [6,4,4][6,4,4] [7,6,4][7,6,4] [8,6,4][8,6,4]

[2,1, ][2,1, ] [2,2, ][2,2, ] [2,4, ][2,4, ] [2,5, ][2,5, ] [2,6, ][2,6, ]

[3, ,1][3, ,1] [3, ,2][3, ,2] [3,4,3][3,4,3] [3,4,4][3,4,4]

execveexecve

waitwait waitwait

writewrite

readread

readread

[2,3, ][2,3, ]

Figure 7: The Happens-before graph and respective vector-clocks
(in brackets) for ps | grep X. Pi=1,2,3 represent the processes in-
volved. The read of process P2 and the execve of P3 form a
load-store race (§5.3.1), and so do the second fork of P1 and the
getdents (read directory entries) of P2. The first wait of P1 and
the exits of P2 and P3 form a wait-wakeups race (§5.3.2). For
clarity, not all system calls are shown.

different processes, RACEPRO adds a directed edge S1 → S2 in
four cases:
1. S1 is a fork call, and S2 is the corresponding fork return in

the child process;
2. S1 is the exit of a child process, and S2 is the corresponding

wait in the parent;
3. S1 is a kill call, and S2 is the corresponding signal delivery in

the target process; or
4. S1 is a stream (e.g., pipe or socket) write, and S2 is a read from

the same stream and the data written and the data read overlap.
We say that event S1 happens-before S2 with respect to a

happens-before graph iff there is a directed path from S1 to S2 in
the happens-before graph. Two events are concurrent with respect
to a happens-before graph iff neither happens before the other.

RACEPRO also computes the vector-clocks [22] for all the sys-
tem calls in the happens-before graph. By definition, the vector-
clock of S1 is earlier than the vector-clock of S2 iff S1 happens-
before S2 with respect to the graph, so comparing the vector-clocks
of system calls is a fast and efficient way to test whether they are
concurrent.

Our definition of inherent happens-before does not capture all
dependencies that may constrain execution ordering. It may be
missing happens-before edges that depend on the behavior of the
application but cannot be directly inferred from the semantics of
the system calls involved. For example, the graph does not capture
dependencies between processes via shared memory. It also does
not capture dependencies caused by contents written to and read
from files. For example, one can implement a fork-join primitive
using read and write operations on a file. In some cases, such inac-
curacies may make RACEPRO more conservative in flagging racy
system calls and thereby identify impossible races. However, such
cases will be filtered later by RACEPRO’s validation step (§6) and
will not be reported.

Figure 7 shows the happens-before graph for the example com-
mand ps | grep X. This command creates two child processes that
access grep’s entry in the /proc directory: the process that runs
grep modifies its command-line data when executed, and the pro-
cess that runs ps reads that data. A race exists because both pro-
cesses access the common resource in an arbitrary order, and the
end result can be either N or N + 1 lines depending on that order.

Consider the execve system call in process P3 and the read
system call in process P2. These two system calls are concur-
rent because there is no directed path between them in the graph.
They both access a shared resource, namely, the inode of the file
cmd_line in the directory corresponding to P3 in /proc. There-
fore, these system calls are racy: depending on the precise execu-

tion order, read may or may not observe the new command line
with the string “X”. Similarly, the second fork in process P1 and
the getdents in process P3 are also racy: getdents may or may
not observe the newly created entry for process P3 in the /proc
directory.

In contrast, consider the pipe between P2 and P3. This pipe is
a shared resource accessed by their write and read system calls,
respectively. However, these two system calls are not racy because
they are not concurrent. There exists a happens-before edge in the
graph because a read from the pipe will block until data is available
after a write to it.

5.2 Modeling Effects of System Calls

Existing algorithms for detecting memory races among threads
rely on identifying concurrent load and store instructions to shared
memory. To leverage such race detection algorithms, RACEPRO
models the effects of a system call on the kernel objects that it may
access using two micro-operations: load and store. These micro-
operations are analogous to the traditional load and store instruc-
tions that are well-understood by the existing algorithms, except
our micro-operations refer to shared kernel objects, such as inodes
and memory maps, instead of an application’s real shared memory.

More formally, we associate an abstract memory range with each
kernel object. The effect of a system call on a kernel object depends
on its semantics. If the system call only observes the object’s state,
we use a load(obj,range) operation. If it may also modify the ob-
ject’s state, we use a store(obj,range) operation. The argument obj
indicates the affected kernel object, and the argument range indi-
cates the ranges being accessed within that object’s abstract mem-
ory. A single system call may access multiple kernel objects or
even the same kernel object multiple times within the course of its
execution.

We use a memory range for a shared kernel object instead of a
single memory location because system calls often access different
properties of an object or ranges of the object data. For instance,
lstat reads the meta-data of files, while write writes the contents
of files. They access a common object, but because they access
distinct properties of that object, we do not consider them to race.
Likewise, read and write system calls to non-overlapping regions
in the same file do not race.

Memory ranges are particularly useful to model pathnames.
Pathname creation and deletion change the parent directory struc-
ture and may race with reading its contents, but pathname cre-
ation, deletion, and lookup may only race with each other if given
the same pathname. For example, both creat(/tmp/a) and
unlink(/tmp/b) may race with a getdents on /tmp, but are
unrelated to each other or to an lstat(/tmp/c). Modeling all
pathname accesses using a single location on the parent directory’s
inode is too restrictive. Instead, we assign a unique memory loca-
tion in the parent directory’s inode for each possible pathname. We
then model pathname creation and deletion system calls as stores
to the designated location, pathname lookup system calls as loads
from that location, and read directory system calls as loads from the
entire pathname space under that directory.

Memory ranges are also useful to model wait system calls which
may block on events and wakeup system calls which may trigger
events. Example wait and wakeup system calls include wait and
exit, respectively, and a blocking read from a pipe and a write
to the pipe, respectively. To model the effect of wait and wakeup
system calls, we use a special location in the abstract memory of
the resource involved. Wait system calls are modeled as loads from
that location, and wakeup system calls are modeled as stores to
that location. For instance, the exit system call does a store to
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Syscall Micro-Op Kernel Object
store file-table
load inodes of path components

open store inode of directory, if O_CREAT
load inode of file, if no O_CREAT
store data of file (range), if O_TRUNC
load process file-table

write store file handle of file
store inode of file
store data of file (range)
load process file-table
store file handle of file

read load inode of file, if regular file
store inode of file, if a stream
load data of file (range)
load process file-table

getdents store file handle of directory
load inode of directory
load data of directory (range)
load inodes of path components

execve store data of /proc/self/status
store data of /proc/self/cmdline
load process memory map

clone store data of /proc directory
exit store ’pid’ of self

store ’ppid’ of re-parented children
wait store data of /proc directory

load ’pid’ of reaped child
getppid load ’ppid’ of self

Table 3: Micro-operations of common system calls..

the special location associated with the parent process ID, and the
getppid system call does a load from the same location.

Table 3 shows the template of micro-operations that RACEPRO
uses to model nine common system calls: open, write, read,
getdents, execve, clone (fork a process), exit, wait, and
getppid. The open system call accesses several resources. It
stores to the process file-table to allocate a new file descriptor, loads
from the inodes of the directories corresponding to the path compo-
nents, stores to the inode of the parent directory if the file is being
created or loads from the file’s inode otherwise, and stores to the
entire data range of the inode if the file is being truncated.

The write, read, and getdents system calls access three re-
sources: process file-table, file handle, and inode. write loads
from the process file-table to locate the file handle, stores to the
file handle to update the file position, stores to the meta-data of the
file’s inode in the file system, and stores to the affected data range
of the file’s inode. The last two micro-operations both affect the
file’s inode, but at different offsets. read from a regular file and
getdents are similar to write, except that they load from the re-
spective file’s or directory’s inode. read from a stream, such as a
socket or a pipe, is also similar, except that it consumes data and
thus modifies the inode’s state, so it is modeled as a store to the
corresponding inode.

The execve system call accesses several resources. It loads from
the inodes of the directories corresponding to the path components.
It also stores to the inodes of the status and cmdline files in the
/proc directory entry of the process, to reflect the newly executed
program name and command line.

The clone, exit, and wait system calls access two resources.
clone loads from the process’s memory map to create a copy for
the newborn child, and stores to the /proc directory inode to reflect

the existence of a new entry in it. exit stores to the pid resource
of the current process to set the zombie state, and stores to the ppid
resource of its children to reparent them to init. wait stores to the
reaped child’s pid resource to change its state from zombie to dead,
and stores to the /proc directory inode to remove the reaped child’s
entry. RACEPRO detects races between exit and wait based on
accesses to the exiting child’s pid resource. Similarly, getppid
loads from the current process’s ppid resource, and RACEPRO de-
tects races between exit and getppid based on accesses to the
ppid resource.

To account for system calls that operate on streams of data, such
as reads and writes on pipes and sockets, we maintain a virtual
write-offset and read-offset for such resources. These offsets are
advanced in response to write and read operations, respectively.
Consider a stream object with write-offset LW and read-offset LR.
A write(fd,buf,n) is modeled as a store to the memory range
[LW ..LW + n] of the object, and also advances LW by n. A
read(fd,buf,n) is modeled as a load from the memory range
[LR..LR + ñ], where ñ = min(LW − LR, n), and also advances
LR by ñ.

To account for the effects of signal delivery and handling, we
model signals in a way that reflects the possibility of a signal to
affect any system call, not just the one system call that was actually
affected in the recording. We associate a unique abstract memory
location with each signal. A kill system call that sends a signal is
modeled as a store to this location. Each system call in the target
process is considered to access that location, and therefore modeled
as a load from all the signals. This method ensures that any system
call that may be affected by a signal would access the shared object
that represents that signal.

5.3 Race Detection Algorithms

Building on the happens-before graph and the modeling of system
calls as micro-operations, RACEPRO detects three types of process
races: load-store races (§5.3.1), wait-wakeups races (§5.3.2), and
wakeup-waits races (§5.3.3). RACEPRO may also be extended to
detect other types of races (§5.3.4).

5.3.1 Load-Store Races

A load-store race occurs when two system calls concurrently access
the same shared object and at least one is a store operation. In this
case, the two system calls could have executed in the reverse order.
RACEPRO flags two system calls as a load-store race if (1) they
are concurrent; (2) they access the same shared kernel object, and
(3) at least one access is a store. In the ps | grep X example shown
in Figure 7, the system calls read and execve are flagged as a race
because they are concurrent, they access the same resource, and at
least one, execve, does a store. In contrast, the system call exit
of P3 also stores to the same resource, but is not flagged as a race
because it is not concurrent with any of them as read happens-
before exit and execve happens-before exit.

RACEPRO detects load-store races using a straightforward
happens-before-based race detection algorithm. We chose a
happens-before over lockset because processes rarely use standard
locks (§2). RACEPRO iterates through all the shared kernel objects
in the recording. For each shared object, it considers the set of all
accesses to that object by all system calls, and divides this set into
per-process lists, such that the list Li of process Pi contains all
the accesses performed by that process. RACEPRO now looks at
all pairs of processes, Pi, Pj , i 6= j, and considers their accesses
to the object. For each access Sn ∈ Li, it scans through the ac-
cesses Sm ∈ Lj . If the vector-clocks of Sn and Sm are concurrent,
the pair of system calls is marked as a race. If Sn → Sm, then
Sn → Sm+k, so the scan is aborted and the next access Sn+1 ∈ Li
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is considered. If Sm → Sn, then Sm → Sn+k, so Sm+1 ∈ Lj

is saved so that the next scan of accesses from Lj will start from
Sm+1, since we know that earlier events happened-before all re-
maining accesses in Li.

Because system calls may access more than one shared object
during their execution, it is possible that the same pair of system
calls will be marked more than once. For example, two write sys-
tem calls from different processes to the same location in the same
file will be marked twice, once when the meta-data of the inode is
considered, and once when the data of the file is considered. Be-
cause RACEPRO detects and later validates (§6) races at the gran-
ularity of system calls, it only reports the respective pair of system
calls once.

RACEPRO may produce a myriad of races, which can take a long
time to produce and later validate. To address this concern, RACE-
PRO prioritizes which races to examine in two ways. First, RACE-
PRO may defer or entirely skip races that are less likely to prove
harmful, depending on the system calls and resource involved. For
example, when analyzing the execution of a parallel compilation,
resources related to visual output may be skipped: although many
processes may be writing to the standard output, races, if they exist,
are likely to be benign. Second, RACEPRO ranks pairs of system
calls according to their distance from each other in the happens-
before graph, and examines nearer system calls first.

5.3.2 Wait-Wakeups Races

A wait-wakeups race occurs when a wait system call may be wo-
ken up by more than a single matching wakeup system call. If the
wakeup system calls executed in a different order, the wait system
call could have picked a different wakeup than in the original exe-
cution. Wait-wakeups races involve at least three system calls. For
instance, a wait system call which does not indicate a specific pro-
cess identifier to wait for will complete if any of its children termi-
nate. Likewise, a blocking read from a stream will complete after
any write to the stream.

In these cases, the wait system call essentially uses a wildcard
argument for the wakeup condition so that there can be multiple
system calls that match the wakeup condition depending on their
order of execution. The wait-wakeups race requires a wildcard,
otherwise there is only a single matching system call, and thus a
single execution order. For instance, a wait system call that re-
quests a specific process identifier must be matched by the exit of
that process. In this case, the wait-wakeup relationship implies an
inherent happens-before edge in the happens-before graph, since
the two system calls must always occur in that order.

RACEPRO flags three system calls as a wait-wakeups race if
(1) one is a wait system call, (2) the other two are wakeup sys-
tem calls that match the wait condition, and (3) the wait system
call did not happen-before any of the wakeup system calls. In the
ps | grep X example shown in Figure 7, the two exit system calls
of P2 and P3 and the first wait system call of P1 are flagged as
a wait-wakeups race since both exit calls are concurrent and can
match the wait. In contrast, the write and read system calls to
and from the pipe are not flagged as a race, because there does not
exist a second wakeup system call that matches the read.

RACEPRO detects wait-wakeups races using an algorithm that
builds on the load-store race detection algorithm, with three main
differences. First, the algorithm considers only those accesses that
correspond to wait and wakeup system calls by looking only at loca-
tions in the abstract memory reserved for wait and wakeup actions.
Second, it considers only pairs of accesses where one is a load and
the other is a store, corresponding to one wait and one wakeup sys-
tem calls. The wait system call must not happen-before the wakeup

// P1 P2

//
. . .

S1: write(P,10);
S2: write(P,10); . . .
S3: . . . read(P,20)

. . .
(a)

// P1 P2

//
. . .

S1: write(P,10);
S2: read(P,20)
S3: write(P,10); . . .

. . .
(b)

Figure 8: Wait-wakeups races in streams.

system call. Third, for each candidate pair of wait and wakeup sys-
tem calls S1 and S2, RACEPRO narrows its search to the remaining
wakeup system calls that match the wait system call by looking for
system calls that store to the same abstract memory location. For
each matching wakeup system call S3, RACEPRO checks whether
it would form a wait-wakeups race together with S1 and S2.

The relative order of the wakeup system calls may matter if their
effect on the resource is cumulative. For instance, Figure 8 de-
picts a cumulative wait-wakeups scenario in which the order of two
write system calls to the same stream determines what a matching
read would observe. A read from a stream may return less data
than requested if the data in the buffer is insufficient. In Figure 8a,
a blocking read occurs after two writes and consumes their cu-
mulative data. However, in Figure 8b, the read occurs before the
second write and returns the data only from the first write. Note
that S2 and S3 in Figure 8a do not form a load-store race as S2

inherently happens-before S3. Thus, RACEPRO flags either case as
a wait-wakeups race. The relative order of the wakeup system calls
does not matter if their effect on the resource is not cumulative,
such as with wait and exit system calls.

5.3.3 Wakeup-Waits Races

A wakeup-waits race occurs when a wakeup system call may wake
up more than a single matching wait system call. Like wait-
wakeups races, wakeup-waits races involve at least three system
calls. For example, a connect system call to a listening socket will
wake up any processes which may have a pending accept on that
socket; the popular Apache Web server uses this method to balance
incoming requests. As another example, a signal sent to a process
may interrupt the process during a system call. Depending on the
exact timing of events, the signal may be delivered at different times
and interrupt different system calls.

Some wakeup system calls only affect the first matching wait
system call that gets executed; that system call “consumes” the
wakeup and the remaining wait system calls must wait for a sub-
sequent wakeup. Examples include connect and accept system
calls, and read and write system calls on streams. In contrast,
when two processes monitor the same file using the select system
call, a file state change will notify both processes equally. Even
in this case, a race exists as the behavior depends on which wait
system calls executes first.

RACEPRO flags three system calls as a wakeup-waits race if
(1) one is a wakeup system call, (2) the other two are wait sys-
tem calls that match the wakeup, (3) the wait system calls did not
happen-before the wakeup system call. To detect wakeup-waits
races, RACEPRO builds on the wait-wakeups race detection algo-
rithm with one difference. For each candidate pair of wait and
wakeup system calls S1 and S2, RACEPRO narrows its search to
the remaining wait system calls that match the wakeup system call
by looking for system calls that load from the same abstract mem-
ory location. For each matching wait system call S3, RACEPRO
checks whether it would form a wakeup-waits race together with
S1 and S2.
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5.3.4 Many-System-Calls Races

RACEPRO’s algorithms handle races that involve two system calls
for load-store races, and three system calls for both wait-wakeups
and wakeup-waits races. However, it is also possible that a race in-
volves more system calls. For example, consider a load-store race
that comprises a sequence of four system calls that only if executed
in the reverse order, from last to first, will produce a bug. RACE-
PRO’s algorithm will not detect this load-store race since it only
considers one pair of system calls at a time. To detect such races,
the algorithms can be extended to consider more system calls at a
time and more complex patterns of races. An alternative approach
is to apply RACEPRO’s analysis recursively on modified executions
(§6.2).

6 Validating Races
A detected process race may be either benign or harmful, depend-
ing on whether it leads to a failure. For instance, consider the
ps | grep X example again which may output either N or N + 1
lines. When run from the command line, this race is usually benign
since most users will automatically recognize and ignore the dif-
ference. However, for applications that rely on one specific output,
this race can be harmful and lead to a failure (§7).

To avoid false positives, RACEPRO validates whether detected
races are harmful and reports only harmful races as bugs. For each
race, it creates an execution branch in which the racy system calls,
which we refer to as anchor system calls, would occur in a different
order from the original recorded execution (§6.1). It replays the
modified execution until the race occurs, then makes the execution
go-live (§6.2). It checks the live execution for failures (§6.3), and,
if found, reports the race as a bug.

6.1 Creating Execution Branches

RACEPRO does not replay the original recorded execution, but in-
stead replays an execution branch built from the original execution
in a controlled way. The execution branch is a truncated and mod-
ified version of the original log file. Given a detected race which,
based on its type, involves two or three anchor system calls, RACE-
PRO creates an execution branch in two steps. First, it copies the
sequence of log events from the original execution recording up
to the anchor system calls. Then, it adds the anchor system calls
with suitable ordering constraints so that they will be replayed in
an order that makes the race resolve differently than in the origi-
nal recorded execution. The rest of the log events from the original
execution are not included in the modified version.

A key requirement in the first step above is that the definition of
up to must form a consistent cut [22] across all the processes to
avoid deadlocks in replay. A consistent cut is a set of system calls,
one from each process, that includes the anchor system calls, such
that all system calls and other log events that occurred before this
set are on one side of the cut. For instance, if S1 in process P1

happens-before S2 in process P2 and we include S2 in the consis-
tent cut, then we must also include S1 in the cut.

To compute a consistent cut for a set of anchor system calls,
RACEPRO simply merges the vector-clocks of the anchor system
calls into a unified vector-clock by taking the latest clock value for
each process. In the resulting vector-clock, the clock value for each
process indicates the last observed happens-before path from that
process to any of the anchor system calls. By definition, the source
of this happens-before edge is also the last system call of that pro-
cess that must be included in the cut. For instance, the unified
vector-clock for the read and execve race in Figure 7 is [3, 3, 2],
and the consistent cut includes the second fork of P1, read of P2,
and execve of P3.

Given a consistent cut, RACEPRO copies the log events of each
process, except the anchor system calls, until the clock value for
that process is reached. It then adds the anchors in a particular or-
der. For load-store races, there are two anchor system calls. To
generate the execution branch, RACEPRO simply flips the order of
the anchors compared to the original execution; it first adds the sys-
tem call that occurred second in the original execution, followed by
the one that occurred first. It also adds an ordering constraint to
ensure that they will be replayed in that order.

For wait-wakeups races, there are three anchor system calls: two
wakeup system calls and a wait system call. To generate the exe-
cution branch, RACEPRO first adds both wakeup system calls, then
adds a modified version of the wait system call in which its wildcard
argument is replaced with a specific argument that will match the
wakeup system call that was not picked in the original execution.
For example, consider a race with two child processes in exit, ei-
ther of which may wake up a parent process in wait. RACEPRO
first adds both exit system calls, then the wait system call mod-
ified such that its wildcard argument is replaced by a specific ar-
gument that will cause this wait to pick the exit of the child that
was not picked in the original execution. It also adds a constraint
to ensure that the parent will execute after that child’s exit. The
other child is not constrained.

For wakeup-waits races, there are also three anchor system calls:
one wakeup system call and two wait system calls. To generate the
execution branch, RACEPRO simply flips the order of the two wait
system calls compared to the original execution. Races that involve
signals, which may be delivered earlier or later than in the original
execution, are handled differently. To generate an execution branch
for a signal to be delivered earlier, RACEPRO simply inserts the sig-
nal delivery event at an earlier location which is thereby considered
one of the anchors of the consistent cut. In contrast, delivering a
signal arbitrarily later is likely to cause replay divergence (§6.2).
Instead, RACEPRO only considers delivering a signal later if it in-
terrupted a system call in the recorded execution, in which case the
signal is instead delivered promptly after the corresponding system
call completes when replayed.

Reordering of the anchor system calls may also imply reordering
of additional system calls that also access the same resources. Con-
sider the execution scenario depicted in Figure 9, which involves
three processes and five system calls that access the same resource.
The system calls S1 and S5 form a load-store race. To generate the
modified execution for this race, RACEPRO will make the following
changes: (1) it will include S1 but not S2, because system calls fol-
lowing the anchors remain outside the cut and are truncated; (2) it
will reorder S5, and therefore S4 too, with respect to S1; and (3) de-
pending on the consistent cut, it will either exclude S3 or reorder
S3 with respect to S1. RACEPRO adjusts the modified recording so
that it will enforce the new partial order of system calls instead of
the partial order of system calls in the original execution.

6.2 Replaying Execution Branches and Going Live

RACEPRO’s replayer provides deterministic replay of the originally
recorded execution and also ensures that successful replay of a
modified execution is also deterministic. Given a modified exe-
cution, RACEPRO replays each recorded event while preserving the
partial order indicated by the recording. The last events replayed are
the anchor system calls. To force races to resolve as desired, RACE-
PRO replays the anchor system calls serially, one by one, while
holding the remaining processes inactive. From that point onward,
it allows the processes to go live to resume normal execution.
Go Live. The ability to go live by resuming live execution from
a replay is fundamental for allowing RACEPRO to validate whether
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// P1 P2 P3

//
. . .

S1: syscall(R);
S2: syscall(R); . . .
S3: . . . . . . syscall(R);
S4: syscall(R) . . .
S5: syscall(R)

. . .

Figure 9: Replay divergence due to reordering.

races manifest into real bugs or not, and thereby avoid reporting
false-positives. To go live, RACEPRO faces two challenges. First,
RACEPRO must ensure that replayed processes perceive the under-
lying system to be the same as at the time of recording. For exam-
ple, system identifiers such as process IDs must remain the same
for processes to run correctly after they transition to live execution.
RACEPRO leverages OS virtualization to encapsulate processes in
a virtual execution environment that provides the same private, vir-
tualized view of the system when the session is replayed or goes
live as when it was recorded [17]. Processes only see virtual identi-
fiers that always stay the same so that the session can go live at any
time. Second, RACEPRO needs to not only replay the application
state in user-space, but also the corresponding state that is internally
maintained by the operating system for the processes. For example,
actions such as creating a pipe and writing to it must be done as
is so that the pipe exists and has suitable state should the process
transition to live execution.

RACEPRO works best when a go-live execution requests no in-
puts from users or external processes; such executions include par-
allel make, parallel boot, and executions of non-interactive pro-
grams. If a go-live execution requests external inputs, RACEPRO
tries to replay the inputs recorded from the original execution. Cur-
rently RACEPRO replays standard inputs from users and pipe or
socket data received from external processes. It does not replay
data read from the file system. Instead, it checkpoints the file sys-
tem before recording an execution and restores to this checkpoint
before each replay, using unionfs [29], which has low overhead.
Replaying inputs may not always work because the go-live execu-
tion differs from the original execution, but we have not found it a
problem in our evaluation because tightly coupled processes should
be recorded together anyway.

RACEPRO can be applied recursively to detect races involving
more system calls (§5.3.4). Since it already records the go-live
portion of modified executions, doing so is as easy as running the
same detection logic on these new recordings. This essentially turns
RACEPRO into a model checker [12]. However, we leave this mode
off by default because exhaustive model checking is quite expen-
sive and it is probably more desirable to spend limited checking
resources on real executions over the fake checking-generated exe-
cutions.
Replay Divergence. RACEPRO’s replayer may not be able to re-
play some execution branches due to replay divergence. This can
result from trying to replay a modified recording instead of the
original recording. Replay divergence occurs when there is a mis-
match between the actual actions of a replayed process and what
is scripted in the execution recording. The mismatch could be be-
tween the actual system call and the expected system call or, even
if the system calls match, between the resources actually accessed
by the system call and the resources expected to be accessed. When
a divergence failure occurs for some execution branch, RACEPRO
does not flag the corresponding race as a bug because it lacks evi-
dence to that end.

// P1 P2

//
. . .

S1: creat(F); . . .
S2: . . . r=unlink(F);

if (r==0)
S3: creat(F);

. . .
(a)

// P1 P2

//
. . .

S1: write(F,x); . . .
S2: . . . read(F,b);

if (b==’x’)
S3: write(F,y);

. . .
(b)

Figure 10: Replay divergence examples.

Divergence is commonly caused when the reordering of the an-
chor system calls implies reordering of additional system calls that
also access the same resources. Consider again the execution sce-
nario depicted in Figure 9 in which the system calls S1 and S5

form a load-store race and the modified execution branch reorders
the systems calls as S3, S4, S5, and S1 while dropping S2 as being
outside the cut. A replay divergence may occur if the execution of
S5 depended on S2 which was dropped out, or if the execution of
S4 depends on S1 which was reordered with respect to S4. Fig-
ure 10a illustrates the former scenario. Reordering the two creat
system calls would cause P2 to call unlink before P1’s creat.
The call will fail and P2 will not call creat and thus diverge from
the recorded execution.

Divergence can also be caused when processes rely on a spe-
cific execution ordering of system calls in a way that is not tracked
by RACEPRO. Figure 10b illustrates one such scenario where pro-
cess P1 executes system call S1 to write data to a file, and process
P2’s execution depends on data read from file by S2. If P2 de-
pends on the specific data written by S1, then reordering S1 and S2

will almost certainly cause a divergence. Were the dependency on
the file’s content considered an inherent happens-before S1 → S2,
RACEPRO’s explorer would not have flagged the race in the first
place. However, it is prohibitively expensive, and in some cases
impossible, to track generic semantics of applications.

Another cause for divergence is use of shared memory. Recall
that shared memory accesses are tracked by the recorder and en-
forced by the replayer. However, reordering of system calls may
lead to reordering of shared memory accesses as well, which will
certainly lead to replay divergence. RACEPRO mitigates this effect
by permitting relaxed execution from where the reordering takes
place. In this mode the replayer does not enforce memory access
ordering, but continues to enforce other ordering constraints such as
partial ordering of system calls. This improves the chances that the
replayed execution reach the point of go-live. However, accesses
to shared memory may now resolve arbitrarily and still cause di-
vergence. For this reason RACEPRO is likely to be less effective in
finding races on OS resources between threads of the same process.
We believe that such races are relatively unlikely to occur.

Replay divergence is reportedly a serious problem for a previous
race classifier [25], where it can occur for two reasons: the race
being validated does occur and causes the execution to run code
or access data not recorded originally, or the race being validated
cannot occur and is a false positive. In contrast, replay divergence
actually helps RACEPRO to distinguish root-cause races from other
races. By relying on a replay followed by transition to live execu-
tion, RACEPRO is no longer concerned with the first scenario. If
replay diverges, RACEPRO can tell that the race is a false positive
and discard it.

Moreover, if the divergence is not due to untracked interactions
or shared memory discussed above (or file locking, also untracked
by RACEPRO), then there must exist another race that is “tighter”
than the one being validated. The other race may involve the same
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Bug ID Description
debian-294579 concurrent adduser processes read and write /etc/passwd without synchronization, corrupting this file
debian-438076 mv unlinks the target file before calling atomic rename, violating the atomicity requirement on mv
debian-399930 logrotate creates a new file then sets it writable, but deamons may observe it without write permissions
redhat-54127 ps | grep race causes a wrong version of licq 7.3 to be started

launchpad-596064 upstart does not wait until smbd creates a directory before spawning nmbd, which requires that directory
launchpad-10809 bash updates the history file without synchronization, corrupting this file

new-1 tcsh 6.17 updates the history file without synchronization, even when “savehist merge” is set
new-2 updatedb removes old database before renaming the new one, so locate finds nothing (findutils 4.4.2)
new-3 concurrent updatedb processes may cause the database to be empty
new-4 incorrect dependencies in Makefile of abr2gbr 1.0.3 may causes compilation failure

Table 4: Bugs found by RACEPRO. Bugs are identified by “distribution - bug ID”. New bugs are identified as “new - bug number”
.

resource or a different one. For example, in Figure 10b the race
between S1 and S3 causes divergence because of another race be-
tween S1 and S2. The latter race is “tighter” in the sense that S2

is closer to S1 because S2 → S3; the race between S1 and S2

subsumes the race between S1 and S3. In other words, discarding
races that cause replay divergence helps RACEPRO to find root-
cause races. We believe the go-live mechanism can benefit existing
replay-based thread-race classifiers.

6.3 Checking Execution Branches
When the replay of an execution branch switches to live execution,
RACEPRO no longer controls the execution. Rather, it records the
execution from that point on, and activates a checker to monitor the
execution for failures or incorrect behavior. If the checker detects
a failure that did not occur during recording, it reports a bug and
saves the combined execution recording, consisting of the original
recording followed by the new recording, so that users can deter-
ministically replay it for debugging.

RACEPRO provides a set of built-in checkers to detect bad appli-
cation behavior. The built-in checker can detect erroneous behavior
such as segmentation faults, infinite loops (via timeouts), error mes-
sages in system logs, and failed commands with non-zero exit sta-
tus. In addition, RACEPRO can also run system-provided checker
programs such as fsck.

Moreover, RACEPRO allows users to plug in domain-specific
checkers. To do so, a user need only provide a program or even a
shell script that will run concurrently along the live execution. For
instance, such scripts could compare the output produced by a mod-
ified execution to that of the original execution, and flag significant
differences as errors. It is also possible to use existing test-suites al-
ready provided with many application packages. These test-suites
are particularly handy if the target application is a server. For in-
stance, both the Apache web server and the MySQL database server
are shipped with basic though useful test suites, which could be ex-
ecuted against a modified server. Finally it may also compare the
output of the go-live execution with a linearized run [13].

By running checkers on live executions, RACEPRO guarantees
that observed failures always correspond to real executions, thus
eliminating false positives if the checkers are accurate. Moreover,
the process races RACEPRO detects are often the root cause of the
failures, aiding developers in diagnosis. In rare cases, after a modi-
fied execution goes live, it may encounter an unrelated bug. RACE-
PRO still provides an execution recording useful for debugging, but
without pointing out the root-cause.

As in many other checking frameworks, RACEPRO can detect
only what is checked. Although its built-in checkers can detect
many errors (§7.1), it may miss domain-specific “silent” corrup-
tions. Fortunately, recent work has developed techniques to check
advanced properties such as conflict serializability or linearizabil-
ity [13], which RACEPRO can leverage.

RACEPRO may have false negatives. A main source is that
RACEPRO is a dynamic tool, thus it may miss bugs in the execu-
tions that do not occur. Fortunately, by checking deployed sys-
tems, RACEPRO increases its checking coverage. A second source
is checker inaccuracy. If a checker is too permissive or no checker is
provided to check for certain failures, RACEPRO would miss bugs.

7 Experimental Results
We have implemented a RACEPRO prototype in Linux. The pro-
totype consists of Linux kernel components for record, replay, and
go-live, and a Python user-space exploration engine for detecting
and validating races. The current prototype has several limitations.
For replaying executions and isolating the side effects of replay,
RACEPRO must checkpoint system states. It currently checkpoints
only file system states, though switching to better checkpoint mech-
anism [27] is straightforward. RACEPRO detects idle state simply
by reading /proc/loadavg, and can benefit from a more sophisti-
cated idle detection algorithm [34].

Using the RACEPRO prototype, we demonstrated its functional-
ity in finding known and unknown bugs, and measured its perfor-
mance overhead. For our experiments, the software used for RACE-
PRO was Linux kernel 2.6.35, Python 2.6.6, Cython 0.14, Networkx
1.1-2, and UnionFs-Fuse 0.23.

7.1 Bugs Found
We evaluated RACEPRO’s effectiveness by testing to see if it could
find both known and unknown bugs. To find known bugs, we used
RACEPRO on 6 bugs from our study. Bugs were selected based on
whether we could find and compile the right version of the software
and run it with RACEPRO. Some of the bugs in §2 are in programs
that we cannot compile, so we excluded them from the experiments.
For each known bug, we wrote a shell script to perform the oper-
ations described in the bug report, without applying any stress to
make the bug easily occur. We ran this shell script without RACE-
PRO 50 times, and observed that the bug never occurred. We then
ran RACEPRO with the script to detect the bug.

To find unknown bugs, we used four commonly used applica-
tions. We applied RACEPRO to the locate utility and updatedb, a
utility to create a database for locate. These two utilities are com-
monly used and well tested, and they touch a shared database of file
names, thus they are likely to race with each other. Inspired by the
history file race in bash, we applied RACEPRO to tcsh. tcsh has
a “savehist merge” option, which should supposedly merge history
files from different windows and sessions. Because compilation
of software packages often involves multiple concurrent and inter-
dependent processes, we also applied RACEPRO to the make -j
command.

Table 4 shows all the bugs RACEPRO found. RACEPRO found a
total of 10 bugs, including all of the known bugs selected and 4 pre-
viously unknown bugs. We highlight a few interesting bugs. Of the
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Statistics Number of Races Execution Times [seconds/race]
Name Processes Syscalls Resources Detected Diverged Benign Harmful Record Replay Generate Validate

debian-294579 19 5275 658 4232 3019 1171 42 2.47 2.43 3.42 2.92
debian-438076 21 1688 213 50 0 46 4 3.76 0.75 0.84 2.87
debian-399930 10 1536 279 17 0 13 4 0.59 0.57 0.75 0.84
redhat-54127 14 1298 229 35 15 16 4 0.27 0.25 0.66 0.41

launchpad-596064 34 5564 722 272 267 3 2 21.45 3.11 2.49 1.70
launchpad-10809 13 1890 205 143 117 16 10 0.27 0.25 0.81 0.44

new-1 12 2569 201 137 90 33 14 0.56 0.54 1.52 0.76
new-2 47 2621 467 82 13 27 42 0.89 0.88 1.44 1.16
new-3 30 4361 2981 17 0 13 4 2.63 2.61 2.34 2.98
new-4 19 4672 716 8 0 7 1 1.01 0.98 4.81 1.35

Table 5: Bug detection statistics. Processes is the number of processes, Syscalls the number of system calls occured, and Resources the
number of distinct shared resources tracked in the recorded executions. For races, Detected is the number of races detected by RACEPRO,
Diverged the races for which the replay diverged (i.e., false positive), Benign the benign races, and Harmful harmful races that led to failures.
Record and Replay are the times to record and replay the executions, respectively. Generate is the average time to generate an execution
branch and Validate the average time to validate a race.

known bugs, the debian-294579 bug is the most serious: it leads to
corruption of /etc/passwd since adduser does not synchronize
concurrent reads and writes of /etc/passwd. This bug was trig-
gered when an administrator tried to import users from OpenLDAP
to a local machine.

The redhat-54127 bug is due to the ps | grep X race. Instant
messenger program licq uses ps | grep to detect whether KDE or
Gnome is running. Due to the race in ps | grep, licq sometimes
believes a windows manager is running when it in fact is not, thus
loading the wrong version of licq.

The 4 previously unknown bugs were named new-1, new-2,
new-3, and new-4. In the new-1 bug, RACEPRO found that tcsh
writes to its history file without proper synchronization, even when
“savehist merge” is set. This option is supposed to merge history
across windows and sessions, but unfortunately, it is not imple-
mented correctly.

In the new-2 bug, RACEPRO found that when locate and
updatedb run concurrently, locate may observe an empty
database and return zero results. The reason is that updatedb un-
links the old database, before calling rename to replace it with the
new database. This unlink is unnecessary as rename guarantees
atomic replacement of the destination link.

In the new-3 bug, RACEPRO found that when multiple instances
of updatedb run concurrently, the resultant database may be cor-
rupted. Multiple updatedb processes may exist, for example, when
users manually run one instance while cron is running another.
While updatedb carefully validates the size of the new database
before using it to replace the old one, the validation and replace-
ment are not atomic, and the database may still be corrupted.

In the new-4 bug, RACEPRO found that in the compilation of
abr2gbr, a package to convert between image formats, the build
process may fail when using make -j for parallel compilation. The
reason is that the dependencies defined in the Makefile are incom-
plete, which produces a race condition between the creation of an
$OBJDIR directory and the use of that directory to store object files
from the compilation.

7.2 Bug Statistics

Table 5 shows various statistics for each detected bug, including the
number of processes involved (Processes), the number of system
calls recorded (Syscalls), the number of unique shared resources
tracked (Resources), the total number of races detected (Races),
the number of races in which the replay diverged (Diverged), the
number of benign races (Benign), and the number of harmful races

(Harmful). The number of processes tends to be large because when
running a shell script, the shell forks a new process for each exter-
nal command. The number of system calls in the recorded execu-
tions ranges from 1,298 to 5,564. The number of distinct shared
resources accessed by these system calls ranges from 201 to 2,981.

The number of races that RACEPRO detects varies across dif-
ferent bugs. For instance, RACEPRO detected only 17 races for
debian-399930, but it detected over 4,000 races for debian-294579.
Typically only a small number of races are harmful, while the ma-
jority are benign, as shown by the Benign column. In addition,
RACEPRO effectively pruned many false positives as shown by the
Diverged column. These two columns together illustrate the benefit
of the replay and go-live approach.

The mapping between harmful races and bugs is generally many-
to-one. There are multiple distinct races that produce the same or
similar failures due to a common logical bug. There are two main
reasons why a single programming error may result in multiple
races. First, a bug may occur in a section of the code that is ex-
ecuted multiple times, for instance in a loop, or in a function called
from multiple sites. Thus, there can be multiple races involving
distinct instances of the same resource type; RACEPRO will detect
and validate each independently. Second, a bug such as missing
locks around critical sections may incorrectly allow reordering of
more than two system calls, and each pair of reordered system calls
could produce a distinct race.

In most cases, we relied on built-in checkers in RACEPRO to
detect the failures. For instance, RACEPRO caught bug launchpad-
596064 by using grep to find error messages in standard daemon
logs, and it caught bugs debian-438076, debian-399930, new-2,
new-3, and new-4 by checking for the exit status of programs. Writ-
ing checkers to detect other cases was also easy, and required just
one line in all cases. For example, for debian-294579, launchpad-
10809, and new-1, we detected the failures simply using a diff of
the old and new versions of the affected file.

7.3 Performance Overhead

Low recording overhead is crucial because RACEPRO runs with de-
ployed systems. Low replay overhead is desirable because RACE-
PRO can check more execution branches within the same amount
of time. To evaluate RACEPRO’s record and replay overhead, we
applied it to a wide range of real applications on an IBM HS20 eS-
erver BladeCenter, each blade with dual 3.06 GHz Intel Xeon CPUs
with hyperthreading, 2.5 GB RAM, a 40 GB local disk, intercon-
nected with a Gigabit Ethernet switch. These applications include
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(1) server applications such as Apache in multi-process and multi-
threaded configurations, MySQL, an OpenSSH server, (2) utility
programs such as SSH clients, make, untar, compression programs
such as gzip and lzma, and a vi editor, and (3) graphical desktop ap-
plications such as Firefox, Acrobat Reader, MPlayer, and OpenOf-
fice. To run the graphical applications on the blade which lacks a
monitor, we used VNC to provide a virtual desktop. For application
workloads that required clients and a server, we ran the clients on
one blade and the server on another. Our results show that RACE-
PRO’s recording overhead was under 2.5% for server and under
15% for desktop applications. Replay speed was in all cases at
least as fast as native execution and in some cases up to two orders
of magnitude faster. This speedup is particularly useful for enabling
rapid race validation. Replay speedup stems from omitted in-kernel
work due to system calls partially or entirely skipped, and waiting
time skipped at replay. Applications that do neither operations per-
form the same work whether recording or replaying, and sustain
speedups close to 1.

We also measured various overhead statistics involved in finding
the bugs listed in Table 5. These measurements were done on an
HP DL360 G3 server with dual 3.06 GHz Intel Xeon CPUs, 4 GB
RAM, and dual 18 GB local disks. For each bug, Table 5 shows
the time to record the execution (Record) and to replay it (Replay),
the average time to generate an execution branch for a race from a
recorded execution (Generate), and the average time to validate an
execution branch for a race (Validate).

In all cases, recording execution times were within 3% of the
original execution times without recording, and replaying the exe-
cution took less time than the original recorded execution. Replay
time for each recording ranged from 250 ms to 1.8 s, providing an
upper limit on the time to replay execution branches. Replaying
execution branches is generally faster because those branches are
truncated versions of the original execution. Replay speedup was
near 1 in most cases, but was as high as 7 times for launchpad-
596064 due to very long idle times as part of starting up the work-
load. These results are in line with our other record-replay re-
sults for desktop and server applications. In particular, the results
demonstrate that RACEPRO recording overhead is low enough to
enable its use on deployed systems.

The time for our unoptimized prototype to detect all races was
under 350 ms for most bugs, but in some cases as much as 3.8 s.
This time correlates roughly with the number of unique shared ker-
nel objects tracked and the number of processes involved. For ex-
ample, detecting all races for launchpad-596064 took 2.5 s, or less
than 0.5 ms per race. The average time to generate an execution
branch for a race ranged from 0.66 s to 4.81 s. This time corre-
lates roughly with the number of system calls. The average time
to validate a race ranged from 0.44 s to 2.98 s. This time correlates
roughly with the replay time.

In most cases, the average time to validate a race was somewhat
larger than the time to replay the original execution by 0.3 s to 2 s.
The time to validate a race is longer because, in addition to the time
to replay the execution branch, it also includes the time to run the
go-live execution, run the checker, and perform setup and cleanup
work between races. Replaying an execution branch which ends
at the anchor system calls is faster than replaying the whole orig-
inal execution. However, during validation, the remainder of the
recorded execution now runs live, which is usually slower than re-
played execution. In one case, launchpad-596064, validation was
faster then original execution replay because nearly all of the exe-
cution branches resulted in replay divergence relatively early, elim-
inating the additional time it would take to replay the entire execu-
tion branches and have them go live.

The Generate and Validate times are averaged per race, so the
total time to generate execution branches and validate races will
grow with the number of races. However, races are independent
of one another, so these operations can be easily done in parallel
on multiple machines to speed them up significantly. Overall, the
results show that RACEPRO can detect harmful process races not
only automatically without human intervention, but efficiently.

8 Related Work
We previously presented in a workshop paper [16] a preliminary
design of RACEPRO, without the full design, implementation, and
evaluation described in this paper. In the remainder of this section,
we discuss closely related work to RACEPRO.
Thread races. Enormous work has been devoted to detecting, di-
agnosing, avoiding, and repairing thread races (e.g., [11, 24, 25, 30,
36, 38]). However, as discussed in §1, existing systems for detect-
ing thread races do not directly address the challenges of detect-
ing process races. For instance, existing static race detectors work
with programs written in only one language [11, 24]; the dynamic
ones detect races within only one process and often incur high over-
head (e.g., [23]). In addition, no previous detection algorithms as
we know of explicitly detect wait-wakeup races, a common type of
process races.

Nonetheless, many ideas in these systems apply to process
races once RACEPRO models system call effects as load and store
micro-operations. For instance, we may leverage the algorithm in
AVIO [21] to detect atomicity violations involving multiple pro-
cesses; the consequence-oriented method in ConSeq [40] to guide
the detection of process races; and serializability or linearizability
checking [13].

A recent system, 2ndStrike [14], detects races that violate com-
plex access order constraints by tracking the typestate of each
shared object. For instance, after a thread calls close(fd), 2nd-
Strike transits the file descriptor to a “closed” state; when another
thread calls read(fd), 2ndStrike flags an error because reads are
allowed only on “open” file descriptors. RACEPRO may borrow
this idea to model system calls with richer effects, but we have not
found the need to do so for the bugs RACEPRO caught.

RACEPRO leverages the replay-classification idea [25] to distill
harmful races from false or benign ones. The go-live mechanism
in RACEPRO improves on existing work by turning a replayed exe-
cution into a real one, thus avoiding replay divergence when a race
does occur and changes the execution to run code not recorded.

We anticipate that ideas in RACEPRO can help thread race detec-
tion, too. For instance, thread wait and wakeup operations may also
pair up in different ways, such as a sem_post waking up multiple
sem_down calls. Similarly, the go-live mechanism can enable other
race classifiers to find “root races” instead of derived ones.
TOCTOU races. TOCTOU race detection [32, 33, 35] has been a
hot topic in the security community. Similar to RACEPRO, these
systems often perform OS-level detection because file accesses are
sanitized by the kernel. However, TOCTOU races often refer to spe-
cific types of races that allow an attacker to access unauthorized
files bypassing permission checks. In contrast, RACEPRO focuses
on general process races and resources not only files. Nonetheless,
RACEPRO can be used to detect TOCTOU races in-vivo, which we
leave for future work.
Checking deployed systems. Several tools can also check de-
ployed systems. CrystalBall [37] detects and avoids errors in a de-
ployed distributed system using an efficient global state collection
and exploration technique. Porting CrystalBall to detect process
races is difficult because it works only with programs written in a
special language, and it does checking while the deployed system
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is running, relying on network delay to hide the checking overhead.
In-vivo testing [8] uses live program states, but it focuses on unit
testing and lacks concurrency support.

To reduce the overhead on a deployed system, several sys-
tems decouple execution recording from dynamic analysis [7, 26].
RACEPRO leverages this approach to check process races. One dif-
ference is that RACEPRO uses OS-level record and replay, which
has lower overhead than [7] and, unlike Speck [26], RACEPRO
works with both multiprocess and multithreaded applications. In
addition, a key mechanism required for validating races is that
RACEPRO can faithfully replay an execution and make it go-live
at any point, which neither previous system can do.
OS support for determinism and transaction. Our idea to perva-
sively detect process races is inspired by operating system transac-
tions in TxOS [28] and pervasive determinism in Determinator [5]
and dOS [6]. TxOS provides transaction support for heterogeneous
OS resources, efficiently and consistently solving many concur-
rency problems at the OS level. For instance, it can prevent file
system TOCTOU attacks. However, as pointed out in [20], even with
transaction support, execution order violations may still occur. De-
terminator advocates a new, radical programming model that con-
verts all races, including thread and process races, into exceptions.
A program conforming to this model runs deterministically in De-
terminator. dOS makes legacy multithreaded programs determinis-
tic even in the presence of races on memory and other shared re-
sources. None of these systems aim to detect process races.

9 Conclusion and Future Work
We have presented the first study of real process races, and the first
system, RACEPRO, for effectively detecting process races beyond
TOCTOU and signal races. Our study has shown that process races
are numerous, elusive, and a real threat. To address this problem,
RACEPRO automatically detects process races, checking deployed
systems in-vivo by recording live executions and then checking
them later. It thus increases checking coverage beyond the con-
figurations or executions covered by software vendors or beta test-
ing sites. First, RACEPRO records executions of multiple processes
while tracking accesses to shared kernel resources via system calls.
Second, it detects process races by modeling recorded system calls
as load and store micro-operations to shared resources and leverag-
ing existing memory race detection algorithms. Third, for each de-
tected race, it modifies the original recorded execution to reproduce
the race by changing the order of system calls involved in the races.
It replays the modified recording up to the race, allows it to resume
live execution, and checks for failures to determine if the race is
harmful. We have implemented RACEPRO, shown that it has low
recording overhead so that it can be used with minimal impact on
deployed systems, and used it with real applications to effectively
detect 10 process races, including several previously unknown bugs
in shells, databases, and makefiles.

Detection of process races is only the first step. Given an exe-
cution where a process race surfaces, developers still have to figure
out the cause of the race. Fixing process races take time, and before
developers produce a fix, systems remain vulnerable. Exploring
the possibility of automatically fixing process races and providing
better operating system primitives to eliminate process races are
important areas of future work.
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