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ABSTRACT

Dynamic data flow tracking (DFT) is a technique broadly used in
a variety of security applications that, unfortunately, exhibits poor
performance, preventing its adoption in production systems. We
present ShadowReplica, a new and efficient approach for acceler-
ating DFT and other shadow memory-based analyses, by decou-

pling analysis from execution and utilizing spare CPU cores to run

them in parallel. Our approach enables us to run a heavyweight
technique, like dynamic taint analysis (DTA), twice as fast, while
concurrently consuming fewer CPU cycles than when applying it
in-line. DFT is run in parallel by a second shadow thread that is
spawned for each application thread, and the two communicate us-
ing a shared data structure. We avoid the problems suffered by
previous approaches, by introducing an off-line application anal-
ysis phase that utilizes both static and dynamic analysis method-
ologies to generate optimized code for decoupling execution and
implementing DFT, while it also minimizes the amount of infor-
mation that needs to be communicated between the two threads.
Furthermore, we use a lock-free ring buffer structure and an N-
way buffering scheme to efficiently exchange data between threads
and maintain high cache-hit rates on multi-core CPUs. Our evalu-
ation shows that ShadowReplica is on average ∼2.3× faster than
in-line DFT (∼2.75× slowdown over native execution) when run-
ning the SPEC CPU2006 benchmark, while similar speed ups were
observed with command-line utilities and popular server software.
Astoundingly, ShadowReplica also reduces the CPU cycles used up
to 30%.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability; D.4.6 [Information flow

controls]: Security and Protection; D.4.7 [Parallelization]: Orga-
nization and Design; D.4.8 [Optimization]: Performance
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1. INTRODUCTION
Dynamic data flow tracking (DFT) is being used extensively in

security research for protecting software [24, 11], analyzing mal-
ware [32, 21], discovering bugs [23, 7], reverse engineering [29],
information flow control [34], etc. However, dynamically applying
DFT tends to significantly slow down the target application, spe-
cially when a virtualization framework [22, 5] is used to apply it
on binary-only software. Overheads can range from a significant
percentage over native execution to several orders of magnitude,
depending on the framework used and particular traits of the im-
plementation [19]. When performance is not an issue, the overhead
can still be problematic: (a) if it changes the behavior of the appli-
cation (e.g., when network connections timeout or the analysis is
no longer transparent), or (b) when computational cycles are scarce
or CPU energy consumption needs to be kept to a minimum, like
in mobile devices.

We present ShadowReplica, a new and efficient approach for ac-
celerating DFT and other shadow memory-based analyses [23], by
decoupling analysis from execution and utilizing spare CPU cores

to run them in parallel. Our approach enables us to run a heavy-
weight technique like dynamic taint analysis (DTA) twice as fast,
while concurrently consuming fewer CPU cycles than when ap-
plying it in-line. The main motivation behind ShadowReplica has
been to accelerate security techniques with well established ben-
efits, such as DFT, but it can also host other types of analyses.
We demonstrate this by also implementing a control-flow integrity
(CFI) [1] tool over ShadowReplica, however, the greater benefits
can be reaped by techniques based on memory shadowing [23, 4].

Decoupling analysis from execution to run it in parallel is by no
means a novel concept [14, 8, 31, 25, 33, 6, 26]. Previous work
can be classified into three categories. The first is based on record-
ing execution and replaying it along with the analysis on a remote
host, or simply a different CPU [8, 26, 6]. These are geared toward
off-line analyses and can greatly reduce the overhead imposed on
the application. However, the speed of the analysis itself is not im-
proved, since execution needs to be replayed and augmented with
the analysis code. These solutions essentially hide the overhead
from the application, by sacrificing computational resources at the
replica. Due to their design, they are not a good fit for applying pre-
ventive security measures, even though they can be used for post-
fact identification of an intrusion.

The second category uses speculative execution to run applica-
tion code including any in-lined analysis in multiple threads run-
ning in parallel [25, 31]. While strictly speaking the analysis is not
decoupled, it is parallelized. These approaches sacrifice significant
processing power to achieve speed up, as at least two additional



threads need to be used for any performance gain, and the results
of some of the threads may be discarded. Furthermore, handling
multi-threaded applications without hardware support remains a
challenge.

The third category aims at offloading the analysis code alone to
another execution thread [14, 33]. These instrument the applica-
tion to collect all the information required to run the analysis in-
dependently, and communicate the information to a thread running
the analysis logic alone. In principle, these approaches are more
efficient, since the application code only runs once. However, in
practice, they have not been able to deliver the expected perfor-
mance gains, due to inefficiently collecting information from the
application and the high overhead of communicating it to the anal-
ysis thread.

ShadowReplica belongs to the third category of systems. Our
main contribution is an off-line application analysis phase that uti-
lizes both static and dynamic analysis approaches to generate opti-
mized code for collecting information from the application, greatly
reducing the amount of data that we need to communicate. For
running DFT independently from the application, such data include
dynamically computed information like memory addresses used by
the program, control flow decisions, and certain operating system
(OS) events like system calls and signals. We focus on the first
two that consist the bulk of information. For addresses, we ex-
ploit memory locality to only communicate a smaller set of them,
and have the DFT code reconstruct the rest based on information
extracted by the off-line analysis. For control flow decisions, we
exploit the fact that most branches have a binary outcome and in-
troduce an intelligent encoding of the information sent to DFT to
skip the most frequent ones.

DFT is run in parallel by a second shadow thread that is spawned
for each application thread, and the two communicate using a shared
data structure. The design of this structure is crucial to avoid the
poor cache performance issues suffered by previous work. We
adopt a lock-free ring buffer structure, consisting of multiple buffers
(N-way buffering scheme [33]). After experimentation, we identi-
fied the optimal size for the sub-buffers of the structure, so that
when two threads are scheduled on different cores on the same CPU
die, we achieve a high cache-hit rate for the shared L3 cache and
a low-eviction rate on each core’s L1 and L2 caches. The latter is
caused when two cores are concurrently read/write in memory that
occupies the same cache line in their L1/L2 caches.

The code implementing DFT is generated during off-line analy-
sis as a C program, and includes a series of compiler-inspired opti-
mizations that accelerate DFT by ignoring dependencies that have
no effect or cancel out each other [18]. Besides the tag propaga-
tion logic, this code also includes per-basic block functionality to
receive all data required (e.g., dynamic addresses and branch de-
cisions). Note that even though the code is in C, it is generated
based on the analysis of the binary without the need for application
source code. The implementation is also generic, meaning that it
can accommodate different tag sizes in shadow memory, and it can
be easily extended to different architectures (e.g., x86-64). Such
flexibility is partly allowed by decoupling DFT from execution.

We implemented ShadowReplica using Intel’s Pin dynamic bi-
nary instrumentation (DBI) framework [22] to instrument the ap-
plication and collect the data required to decouple DFT. Shadow
threads running the DFT code run natively (without Pin), but in
the same address space, also implementing dynamic taint analy-
sis [24] protection from memory corruption exploits. Our evalua-
tion shows that compared with an already optimized in-lined DFT
framework [18], it is extremely effective in accelerating both the
application and DFT, but also using less CPU cycles. In other

words, we do not sacrifice the spare cores to accelerate DFT, but ex-
ploit parallelization to improve the efficiency of DFT in all fronts.
ShadowReplica is on average ∼2.3× faster than in-lined DTA when
running the SPEC2006 benchmark (∼2.75× slowdown over na-
tive execution). We observed similar speed ups with command-
line utilities, like bzip2 and tar, and the Apache and MySQL
servers. We also discovered that with ShadowReplica applying
DFT requires less CPU cycles than the in-lined case, reaching a
30% reduction in the 401.bzip2 benchmark.

The contributions of this paper can be summarized as follows:

• We propose a novel approach to efficiently parallelize in-line
analysis by implementing low-cost communication between
the primary original process and the secondary analyzer pro-
cess.

• Our approach does not require a hardware component at run-
time, but instead it is based on static and dynamic program
analysis performed in advance.

• ShadowReplica preserves the functionality of both the orig-
inal program being monitored, and the analysis logic that
would be otherwise applied in-line.

• We implement a DFT analysis prototype, but our approach
can be also applied to other analyses based on memory shad-
owing.

• We evaluate our prototype with the SPEC2006 CPU bench-
mark suite and various real-world applications, and our re-
sults confirm both the efficiency and effectiveness of our ap-
proach. Furthermore, we show that through ShadowReplica
DFT uses less CPU cycles and energy, than when applied
in-line.

The rest of this paper is organized as follows. Section 2 presents
an overview of our approach. Section 3 describes the off-line anal-
ysis stage, which includes most of our optimizations. Section 4
explains the dynamic runtime. In Sec. 5, we provide implemen-
tation details, and the evaluation of our framework is presented in
Sec. 6. After discussing related work in Sec. 7, we conclude the
paper in Sec. 8.

2. OVERVIEW

2.1 In-line vs. Decoupled DFT
Dynamically applying DFT on binaries usually involves the use

of a dynamic binary instrumentation (DBI) framework or a virtual
machine monitor (VMM) that will transparently extend the pro-
gram being analyzed. Such frameworks enable us to inject code
implementing DFT in binaries, by interleaving framework and DFT
code with application code, as shown in Fig.1 (in-line).

ShadowReplica proposes an efficient approach for accelerating
dynamic DFT and similar analyses by decoupling them from exe-
cution and utilizing spare CPU cores to run the instrumented appli-
cation and DFT code in parallel. We replace the in-line DFT logic
in the application with a stub that extracts the minimal information
required to independently perform the analysis in another thread,
and enqueues the information in a shared data structure. The DFT
code, which is running on a different CPU core, is prefixed with a
consumer stub that pulls out the information and then performs the
analysis.

Decoupling the analysis from execution enables us to run it com-
pletely independently and without involving the instrumentation
framework, as illustrated in Fig. 1 (decoupled). Depending on
the cost of the analysis (e.g., tracking implicit information flows
is more costly than explicit flows), it can accelerate both applica-
tion and analysis. In short, if Ii, Ai, and Pi are the instrumentation,
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Figure 1: In-line vs. decoupled application of DFT with Shad-

owReplica and binary instrumentation.

analysis, and application code costs with in-line analysis, and Id,
Ad, Pd, Ed and Dd are the costs of instrumentation, analysis, ap-
plication, enqueueing and dequeueing code (as defined in the above
paragraph), then decoupling is efficient when:

Ii + Ai + Pi > max(Id + Pd + Ed, Ad +Dd) (1)

Essentially, decoupling is more efficient when the following two
conditions are met: (a) if the cost of the in-line analysis is higher
than the cost of extracting the information and enqueueing, and (b)

if the cost of program execution combined with instrumentation in-
terference is higher than dequeueing cost. Ha et al. [14] provide a
more extensive model of the costs and benefits involved with de-
coupling analysis.

Analyses that are bulky code-wise can experience even larger
benefits because replacing them with more compact code, as decou-
pling does, exerts less pressure to the instrumentation framework,
due to the smaller number of instructions that need to be interleaved
with application code. For instance, when implementing DFT us-
ing binary instrumentation, the developer needs to take extra care
to avoid large chunks of analysis code and conditional statements
to achieve good performance [19]. When decoupling DFT, we no
longer have the same limitations, we could even use utility libraries
and generally be more flexible.

We need to emphasize that ShadowReplica does not rely on com-
plete execution replay [8, 26] or duplicating execution in other
cores through speculative execution [25, 31]. So even though other
cores may be utilized,1 it does not waste processing cycles. Appli-
cation code runs exactly once, and the same stands for the analysis
code that runs in parallel. The performance and energy conserva-
tion benefits gained are solely due to exploiting the true parallelism
offered by multi-cores, and being very efficient in collecting and
communicating all the data required for the analysis to proceed in-
dependently.

2.2 Decoupling DFT
DFT involves accurately tracking selected data of interest as they

propagate during program execution, and has many uses in the se-
curity domain [12, 9, 3, 27, 32, 24, 34]. In ShadowReplica, we im-
plemented DFT along with its most popular incarnation, DTA [24],
where input data (e.g., network data) are deemed “tainted” and their
use is prohibited in certain program locations (e.g., in instructions
manipulating the control flow of programs, such as indirect branch
instructions and function calls).

We created a code analysis module for ShadowReplica that im-
plements DFT by generating optimized C code for performing data
tracking for all the BBLs discovered during profiling, and generic
code for newly discovered code. We follow the methodology we
introduced in prior work for optimizing in-lined DFT code [18].

1We do not demand the kernel to schedule the replica on a different
core, but we do enforce each replica to be on the same package/die
with the process to benefit from L3 cache sharing.
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To correctly and independently track data and propagate tags,
the analysis code has two sources of information: the code itself
and the application executing in parallel. For example, an x86 in-
struction like mov eax, ebx indicates that a tag should be prop-
agated between registers, so no runtime information is required.
However, for instructions that reference memory using dynamically
calculated addresses, e.g., mov eax, (ecx, ebp,4), we need
to obtain the effective address used by the instruction during exe-
cution. Remember, that the analysis code does not execute appli-
cation code, nor does it have access to data contained in the reg-
isters because it is executing in parallel. The application needs to
also supply information regarding control-flow decisions, as well as
any other data required by DFT, like when to tag (taint) an address
range that is only available at runtime. This is all the information

required to accurately perform DFT in parallel.
Security checks are normally performed in parallel with the ap-

plication. However, it is necessary that we have the ability to syn-
chronize with the analysis code, by waiting for it to complete. This
is important because in the case of DTA we want to ensure that
program control flow has not been compromised, and in the case
of information flow control that no sensitive data has been leaked.
This is achieved by injecting code in the application that checks
whether the analysis has completed. For instance, to protect from
leaking sensitive information, our prototype implementation syn-
chronizes before system calls used to transmit data, like write()
and send().

Changing characteristics of DFT, like the size of tags it sup-
ports that affect the number of different data classes or labels it
can track, only affects the analysis code. The application is only
delayed when synchronization is required and, as our evaluation
shows, currently this is not an issue because DFT executes as fast
(if not faster) as the application.

2.3 Architecture
Figure 2 depicts the architecture of ShadowReplica, which com-

prises of two stages. The first stage, shown in the left of the figure
and discussed thoroughly in Sec. 3, involves profiling an applica-
tion both statically and dynamically to extract code blocks, or basic
blocks (BBLs), and control-flow information (CFG+). The latter
includes a partial control-flow graph showing how the extracted
BBLs are connected, and frequency data indicating which branches
are taken more frequently than others.

This data is processed to generate optimized code to be injected
in the application, and code for running the analysis in parallel. The
first contains code stubs that enqueue the information required to



decouple DFT in a shared data structure. Note that ShadowReplica
does not naively generate code for enqueueing everything, but en-
sures that only information that has potentially changed since the
previous executed block are enqueued. This is one of our main
contributions, and problems of previous work [25, 33] that failed to
satisfy equation (1). The second includes code stubs that dequeue
information along with the analysis code.

The generated code is passed to the runtime component of Shad-
owReplica, shown in Fig. 2(b) and discussed in Sec. 4. We utilize
a DBI framework that allows us to inject the enqueueing stubs in
the application in an efficient manner and with flexibility (i.e., on
arbitrary instructions of a binary). Our motivation for using a DBI
is that it allows us to apply ShadowReplica on unmodified binary
applications, and it enables different analyses, security related or
others, by offering the ability to “interfere” with the application at
the lowest possible level.

Application threads are executing over the DBI and our tool,
which inject the enqueueing stubs. We will refer to an applica-
tion thread as the primary. For each primary, we spawn a shadow
thread that will run the analysis code, which we will refer to as the
secondary. While both threads are in the same address space, ap-
plications threads are running over the DBI’s VMM, but shadow
threads are executing natively, since the code generated in the first
phase includes everything required to run the analysis. Our current
design spawns secondary threads in the same process used by the
DBI and the application. In the future, we are considering hosting
the secondary threads in a different process for increased isolation.

Communication between primary and secondary threads is done
through a ring-buffer structure optimized for multi-core architec-
tures (Sec. 4.2). The ring buffer is also used for the primary thread
to synchronize with the secondary, when it is required that the anal-
ysis is complete before proceeding with execution. For instance,
ensuring that integrity has not been compromised before allowing
a certain system call or performing a computed branch.

Multi-threaded applications accessing shared data within a crit-
ical area protected by locks (e.g., mutexes) are handled by using
an additional ring buffer structure for every critical area. When a
primary enters such an area by acquiring a lock, it first synchro-
nizes with the secondary, and then they both switch to the new
ring buffer, which now receives all the information generated by
the enqueueing stubs. Before exiting the critical area, the primary
synchronizes again with the secondary, and then both switch to the
original buffer.

Finally, we export any new BBLs and CFG edges that are dis-
covered at runtime, which can be passed back for code analysis.
Extending the coverage of our analysis means that we can gener-
ate optimal code for a larger part of the application. Note that our
analysis also generates generic code for handling application code
not discovered during profiling. This “default” code performs all
necessary functionality, albeit slower than the optimized code gen-
erated for known BBLs and control-flow edges.

2.4 Other Applicable Analyses
The main motivation behind ShadowReplica has been to acceler-

ate security techniques with well established benefits, by providing
a methodology and framework that can utilize the parallelism of-
fered by multi-core CPUs. Besides DFT and DTA, we also imple-
mented a control-flow integrity [1] tool to demonstrate the flexibil-
ity of our approach. We argue that many other analyses can benefit
from it.

Control-flow Integrity. CFI [1], similarly to DTA, aims at pre-
venting attackers from compromising applications by hijacking their
control flow. Programs normally follow predetermined execution

Figure 3: Example CFG. Nodes represent basic blocks and

edges are control transfers. During dynamic profiling, we count

how many times each edge is followed (edge labels).

paths. CFI enforces program flow to follow one of these prede-
termined paths. Determining a complete CFG of a program is a
challenging task in itself, but assuming such a CFG is available,
CFI operates as follows. Run-time checks are injected in the appli-
cation to ensure that control flow remains within the CFG. These
checks are placed before every indirect control flow transfer in the
application and check that the destination is one of the intended
ones. Basically, all possible destinations of a particular control
flow instruction are assigned the same id, which is validated be-
fore transferring control. While this can be overly permissive, be-
cause multiple instructions may have the same targets assigning
the same id to the super-set of destinations, this approach allows
for fast checks. We implemented CFI with ShadowReplica by us-
ing the CFG information extracted during the application profiling,
and by generating analysis code that checks whether a control-flow
transfer is allowable, using the same control flow enqueueing stubs
we used for DFT.

Other Analyses. Dynamic analyses that use DBI frameworks [22,
5, 23] can also readily make use of ShadowReplica (e.g., tech-
niques that focus on memory integrity detection). Valgrind’s Mem-
check [23] uses shadow memory to keep track of uninitialized val-
ues in memory and identify their (dangerous) use; Memcheck is
an ideal candidate for accelerating through ShadowReplica. Dr.
Memory [4] discovers similar types of programming errors includ-
ing memory leaks, heap overflows, etc. Software-based fault iso-
lation [30] mechanisms can also be easily supported through our
framework by using the existing code analysis for the primary and
small modifications to the secondary. Approaches that do not de-
pend on shadow memory can also be supported with moderate en-
gineering effort. Examples include call graph profiling, method
counting, and path profiling. Finally, ShadowReplica can be ex-
tended to work for analyses that refer to memory contents such as
integer overflow detection. Note that analyses of this type are less
common for binaries, as they require access to source code.

Limitations. There are problem areas where ShadowReplica is
not a good fit, exactly because analysis code is decoupled from
execution. For instance, cache simulation [16] requires that the
ordering of memory accesses can be reconstructed accurately. This
task is challenging, even when using in-lined analysis code. It is
even more so, when the analysis code runs in parallel.

3. OFF-LINE APPLICATION ANALYSIS
We analyze the application off-line to generate optimized instru-

mentation code to be injected in primary threads, as well as a new
program in C that implements the analysis in the secondary (based
on the execution trace recorded by the primary). This section de-
scribes our methodology for doing so.

3.1 Application Profiling
The first step of application analysis involves profiling (Fig. 2(a))

to gather code and control-flow information. ShadowReplica uses



both static and dynamic profiling. Currently, we perform static
profiling using the IDA Pro [15] disassembler, using its scripting
API. To complement our data, we built a tool over the Pin [22]
DBI framework that dynamically collects information about a bi-
nary by executing it with various inputs (e.g., test inputs and bench-
marks). New methodologies that improve code and CFG identifica-
tion are orthogonal to our design and could be included alongside
our toolkit with little effort.

Every BBL identified during profiling is assigned a unique id
(BBID). BBIDs are calculated by combining the block’s offset from
the beginning of the executable image it belongs to with a hash of
the image’s text section to produce a 32-bit value. An example
control-flow graph collected during profiling is shown in Fig. 3.
During dynamic profiling, we also keep a counter of how many
times each control-flow transfer is observed. In the example in
Fig. 3, when executing BBL2, BBL4 was followed 9999 times
while BBL3 only once.

3.2 Primary Code Generation
During code analysis we generate optimized code for the primary

thread to enqueue information necessary for performing DFT in
the secondary. The most frequently enqueued data are effective
addresses used in memory accesses and control-flow transfers. This
section discusses our approach for minimizing the amount of data
we need to send to the secondary.

3.2.1 Effective Address Recording

A naive approach would transfer all addresses involved in mem-
ory operations to the secondary, leading to excessive overhead. We
developed a series of optimizations to reduce the number of ad-
dresses needed to be enqueued without compromising the sound-
ness of the analysis. Fig. 4 will assist us in presenting our methods.

We begin by transforming the BBL in Fig. 4 (a) into the DFT-
specific representation in Fig. 4 (b), which captures data depen-
dencies and data tracking semantics, as defined in an intermediate
representation called Taint Flow Algebra (TFA) [18]. Each register
used in the BBL is treated like a variable. Whenever a register vari-
able is updated, a new version of the variable is created (e.g., eax1
in line 1 of Fig. 4(b)) that is valid within the BBL. For example, in
lines 1 to 4 and 6, of Fig. 4(b), a tag is copied, while in line 5 two
tags are combined, denoted by the OR (‘|’) operator.

Intra-block Optimization. We search for effective addresses
within a BBL that correlate with each other to identify the min-
imum set required that would correctly restore all of them in the
secondary. For instance, we only need to enqueue one of [esp0]
or [esp0 + 4] from Fig. 4 (b), as one can be derived from the
other by adding/subtracting a constant offset. This search is greatly
facilitated by the DFT transformation and register variables ver-
sioning, but it is applicable to all shadow memory analyses, as it
only tries to eliminate related addresses.

DFT Optimization. This optimization identifies instructions,
and consequently memory operands, which are not going to be
used by the analysis in the secondary, by applying compiler op-
timizations, such as dead code elimination and data-flow analysis,
against our DFT-specific representation of the BBL [18]. For in-
stance, in Fig. 4(b) we determine that the propagation in line 1 is
redundant, as its destination operand (eax1) is overwritten later in
line 3, before being referred by any other instruction. This allows
us to ignore its memory operand [esp0].

Inter-block Optimization. We extend the scope of the intra-
block optimization to cover multiple blocks connected by control
transfers. This implements backward data-flow analysis [2] with
the partial CFG gathered during profiling. We begin by defining the

input and output variables for each BBL. We then produce a list of
input and output memory operands which are live before entering
and when leaving a BBL. Using our representation, input memory
operands are the ones with all of its constituent register variables
in version 0, and output memory operands are the ones that have
all of its constituent register variables at their maximum version. In
our example in Fig. 4, the inputs list comprises of [esp0], and
the outputs list includes [esp0], [ebx1], [eax2 + ebx1],
and [eax2 + 2 × ebx1 + 200]. If all predecessors for the
BBL contain [esp0] in their outputs list, the block can harmlessly
exclude this from logging because the secondary still has a valid
reference to the value. The optimization has greater effect as more
inputs are found on the outputs lists of a block’s predecessors.

Since we only have a partial CFG of the application, it is possible
that at runtime we identify new execution paths that invalidate the
backwards data-flow analysis. We tackle this issue by introducing
two heuristics that make inter-block optimization more conserva-
tive. First, if we find any indirect jumps to a known BBL, we as-
sume that others may also exist and exclude these blocks from opti-
mization. Second, we assume that function entry point BBLs, may
be reachable by other, unknown indirect calls, and we also exclude
them. We consider these measures to be enough to cover most legit-
imate executions, but they are not formally complete, and as such
may not cover applications that are buggy or malicious. Note that
with the latter, we are not referring to vulnerable applications that
may be compromised, an event that can be prevented by DTA, but
malicious software that one may wish to analyze. In the case of
malware, this optimization can be disabled with negligible impact
on performance (see Sec. 6).

Linear Lower Bound. To enhance the intra- and inter-block
optimizations, we introduce the concept of Linear Lower bound,
which interprets memory operands as a series of linear equations:

breg + s× ireg + d (2)

Memory addressing in x86 architectures can be expressed as a
linear equation (2). It contains two variables for base and index
registers (breg and ireg), a coefficient s for scale, and a constant d
for displacement.2 Thus, we can say each BBL is associated with a
group of linear equations, where each equation represents a distinct
memory operand (Fig. 4(c)). For every BBL, we solve their group
of linear equations, which results in reducing the number of mem-
ory operands that need to be enqueued and decreasing the size of a
BBL’s inputs and outputs lists for the inter-block optimization. For
example, in line 5 of Fig. 4(c), [ebx1] is no longer required, as
it can be calculated from [eax2 + ebx1] and [eax2 + 2 ×

ebx1 + 200] in lines 4 and 6. It also helps inter-block analysis
by adding [eax2] to the BBL’s outputs list.

Having applied all, except the inter-block optimization, the num-
ber of effective addresses that need to be transferred for our exam-
ple is reduced from six to three (from Fig. 4(c) to (d)). The effects
of individual optimizations are discussed in Sec. 6.1.

3.2.2 Control Flow Recording

As in the previous section, a naive approach to ensure control
flow replication would involve the primary enqueueing the BBID
of every BBL being executed. However, simply doing this for all
BBLs is too costly.

After examining how control-flow transitions are performed in
x86 architectures, we identify three different types of instructions:

2Segmentation registers see limited use today, mostly for referring
to thread local storage (TLS). We ignore segmentation-based ad-
dressing for the Linear Lower Bound optimization.
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Figure 4: Example of how a BBL is transformed during code analysis.

(a) direct jumps, (b) direct branches, and (c) indirect jumps. For
direct jumps, BBIDs for successor BBLs can be excluded from log-
ging, since there is only a single, fixed exit once execution enters
into BBL0. For example, the transitions from BBL0 to BBL1, and
then to BBL2 in Fig. 3 can be excluded. Direct branches can have
two outcomes. They are either taken, or fall through where execu-
tion continues at the next instruction. We exploit this property to
only enqueue a BBID, when the least frequent outcome, according
to our dynamic profiling, occurs. For instance, when BBL3 follows
BBL2 in Fig. 3. We use the absence of BBL3’s id to signify that
BBL4 followed as expected. Note that if a BBL has two predeces-
sors and it is the most frequent path for only one of them, we log its
BBID. Last, for indirect jumps we always record the BBID follow-
ing them, since they are hard to predict. Fortunately, the number of
such jumps are less compared to direct transfers.

Applying our approach on the example CFG from Fig. 3, we
would only need to enqueue the id of BBL3 once. Obviously, this
approach offers greater benefits when the profiling covers the seg-
ments of the application that are to run more frequently in practice.
It does not require that it covers all code, but unknown code paths
will not perform as well. We evaluate the effects of this optimiza-
tion for various applications in Sec. 6.

3.2.3 Ring Buffer Fast Checking

For every enqueueing operation from the primary, we should
check whether there is available space in the ring buffer to avoid
an overflow. However, performing this check within the DBI is
very costly, as it requires backing up the eflags register. We at-
tempt to reduce the frequency of this operation by performing it
selectively. For instance, every 100 BBLs. However, to correctly
placing the checks in the presence of CFG loops, so that they are
actually performed every 100 executed blocks, is challenging. We
mitigated this problem by introducing an algorithm, which finds ba-
sic blocks that program execution is ensured to visit at most every
k block executions. The problem formally stated is as follows.

We are given a CFG defined as C = (V,E). C is a weighted
directed graph where V represents a set of basic blocks and E rep-
resents a set of edges that correspond to control transfers among
blocks. We also have a weight function w(v) that returns execution
counts for v ∈ V . Given that we want to find a subset of vertices S
such that:

• For a given parameter k, we can assure that the program ex-
ecution will visit a node from S at most every k block exe-
cutions.

•
∑

v∈S
w(v) is close to the minimum.

The above problem is identical to the feedback vertex set prob-

lem [13], which is NP-complete when any non-cyclic paths from
C is smaller than k. Thus, we can easily reduce our problem to
this one and use one of its approximation approaches. Addition-
ally, to take into consideration new execution paths not discovered
during profiling, the secondary monitors the ring buffer and signals
the primary, when it exceeds a safety threshold. Finally, we also

allocate a write-protected memory page at the end of the available
space in the ring buffer that will generate a page fault, which can
be intercepted and handled, in the case that all other checks fails.

3.3 Secondary Code Generation
During the off-line analysis we generate C code that implements

a program to dequeue information from the shared ring-buffer and
implement DFT. Listing 1 contains a secondary code block gener-
ated for the example in Fig. 4.

3.3.1 Control Flow Restoration

Each code segment begins with a goto label (line 2), which is
used with the goto statement to transfer control to the segment.
Control transfers are made by code appended to the segments. In
this example, lines 21 ∼ 31 implement a direct branch. First, we
check whether the ring buffer contains a valid effective address.
The presence of an address instead of BBID (i.e., the absence of
a BBID) indicates that the primary followed the more frequent
path (BBID 0xef13a598), as we determined during code analy-
sis (Sec. 3.2.2). Otherwise, the code most likely did not take the
branch and continued to the BBL we previously identified (in this
case 0xef13a5ba). We do not blindly assume this, but rather check
that this is indeed the case (line 25). We do this to accommodate
unexpected control-flow transfers, such as the ones caused by sig-
nal delivery (Linux) or an exception (Windows). If an unexpected
BBID is found, we perform a look up in a hash table that contains
all BBLs identified during the analysis, and the result of the search
becomes the target of the transfer in line 29. Note that unknown
BBIDs point to a block handling the slow path. While a look up is
costly, this path is visited rarely. We also use macros likely()
and unlikely() (lines 5, 21, and 25) to hint the compiler to
favor the likely part of the condition.

3.3.2 Optimized DFT

Each code segment generated performs tag propagation for the
BBL it is associated with. Effective addresses are referenced di-
rectly within the ring buffer, and shadow memory is updated as
required by code semantics. For each BBL, optimized tag propaga-
tion logic is generated based on the methodology introduced in our
previous work [18]. Briefly, this involves extracting tag propaga-
tion semantics and representing them in a DFT-specific form, which
is susceptible to multiple compiler-inspired optimizations that aim
at removing propagation instructions that have no practical effect
or cancel out each other, as well as reducing the number of instruc-
tions required for propagation by grouping them together.

The propagation code in lines 6 ∼ 12 is generated based on the
example in Fig. 4. rbuf() is a macro that returns a value in the
ring buffer relative to the current reading index. Ring buffer ac-
cesses correspond to ea0, ea3 and ea5 in Fig. 4(d). The MEM_E()
macro in lines 8 ∼ 11 translates memory addresses from the real
execution context to shadow memory locations, while REG() does
the same for registers.



1 /∗ BBL label ∗/
2 BB_0xef13a586:
3

4 /∗ LIFT’s FastPath(FP) optimization ∗/
5 if (unlikely( REG(EBX) || MEM_E(rbuf(0) + 4) || REG(EDI) || . . . ))
6 {
7 /∗ propagation body ∗/
8 REG(EBX) = MEM_E(rbuf(0) + 4);
9 . . .

10 REG(EDI) |= MEM_E(rbuf(2) − rbuf(1) −200);
11 REG(ECX) = MEM_E(rbuf(2));
12 }
13

14 /∗ update the global address array ∗/
15 garg(0) = rbuf(1);
16

17 /∗ increase index ∗/
18 INC_IDX(3) ;
19

20 /∗ control transfer ∗/
21 if (likely(IS_VALID_EA(rbuf(0) )) {
22 /∗ direct jump ∗/
23 goto BB_0xef13a598;
24 } else {
25 if (likely(rbuf(0) == 0xef13a5ba))
26 goto BB_0xef13a5ba;
27 } else {
28 /∗ hash lookup for computed goto ∗/
29 goto locateBbIdLabel();
30 }
31 }

Listing 1: Example of secondary code for a BBL.

We exploit the fact that we can now run conditional statement
fast, since we are running the analysis outside the DBI, to imple-
ment a simplified version of the FastPath (FP) optimization pro-
posed by LIFT [28]. This is done in line 8, where we first check
whether any of the input and output variables involved in this block
are tagged, before propagating empty tags.

Last, in line 15 we save the EA that the inter-block optimization
determined it is also used by successor BBLs in the global argu-
ments array garg, and progress the increasing index of the ring
buffer in line 18.

4. RUNTIME
The off-line application analysis produces the enqueueing stubs

for the primary and the analysis body for the secondary. These are
compiled into a single dynamic shared object (DSO) and loaded
by ShadowReplica at start up. In this section, we describe various
aspects of the runtime environment.

4.1 DFT

4.1.1 Shadow Memory Management

The shadow memory structure plays a crucial role in the perfor-
mance of the secondary. Avoiding conditional statements in in-line
DFT systems, frequently restricts them to flat memory structures
like bitmaps, where reading and updating can be done directly. An
approach that does not scale on 64-bit architectures, because the
bitmap becomes excessively large. Due to our design, conditional
statements do not have such negative performance effects.

The approach we adopted is borrowed from libdft [19] that im-
plements byte-per-byte allocation, with a low-cost shadow address
translation, and dynamic allocation to achieve a small memory foot-
print. Shadow memory is maintained in sync with the memory used
by the application by intercepting system calls that manage mem-
ory (e.g., mmap(), munmap(), brk()) and enqueueing special
control commands that allocate and deallocate shadow memory ar-

eas. The information sent includes the command code and an ad-
dress range tuple (offset, length).

To access shadow memory, we first consult a page table like data
structure, which points to a per-page flat structure. The mecha-
nism does not require a check for page validity because intercepting
the memory management calls ensures it. Accesses to unallocated
space are trapped to detect invalid memory addresses.

4.1.2 DFT Sources and Sinks for Taint Analysis

Tagging memory areas, when data are read from a file or the
network, is performed by generating code that enqueues another
control command in the ring buffer. The data sent to the secondary
include the command code, an address range tuple (offset, length),
and the tag value (or label). The value with which to tag the address
range in shadow memory depends on the particular DFT-logic. For
instance, DTA uses binary tags, data can tainted or clean. In this
case, we can simply omit the tag value.

Checking for tagged data can be either done by enqueueing a
control command, or it can be done entirely by the secondary, as
it is in the case of DTA. For instance, whenever a BBL ends with
a ret instruction, the secondary checks the location of the return
address in the stack to ensure it is clean. If we wanted to check
for sensitive information leaks, we would have to issue a command
from the primary whenever a write() or send() system call
is made. Note that all checks are applied on the secondary, which
can take action depending on their outcome. For DTA, if a check
fails, we immediately terminate the application, as it signifies that
the application’s control flow has been compromised. Other actions
could involve logging memory contents to analyze the attack [32],
or allowing the attack to continue for forensics purposes [27].

Moreover, the primary synchronizes with the secondary before
potentially sensitive system calls (e.g., write() and send())
that may leak sensitive information from the system. This ensures
that the secondary does not fall behind, allowing an attack to go un-
detected for a long time, or at least not before leaking information.
This granularity of synchronization does leave a small but, never-
theless, existing time window that the attacker can leverage to sup-
press the secondary and our checks. We have complemented our
implementation to also require synchronization whenever a new
BBL (i.e., a new execution path) is identified at run time to guard
against such an event.

4.1.3 Generic Block Handler

BBLs that were not identified during profiling are processed by
the Generic Block Handler (GBH), our slow-path implementation
of DFT. In this case, the primary on-the-fly transforms instructions
and their operands into their DFT-specific representation of TFA.
Then, it implements a stack-based interpreter that enqueues the
DFT operations (i.e., AND, OR, ASSIGN), which need to be per-
formed by the secondary, in the ring buffer.

4.2 Ring Buffer
We implemented the ring buffer, as a lock-free, ring buffer struc-

ture for a single producer (primary), single consumer (secondary)
model. Lamport et al. [20] initially proposed a lock-free design for
the model, however, the design suffers from severe performance
overheads on multi-core CPUs due to poor cache performance [14].
The most serious problem we observed was forced L1 eviction that
occurs as the secondary attempts to read the page that was just mod-
ified by the primary, while it is still in the primary’s L1 cache and
before it is committed to RAM. In certain cases, the overhead due
to ring-buffer communication increased to the point that our frame-
work became unusable. To mitigate the problem, we switched to



a N -way buffering scheme [33], where the ring-buffer is divided
into N separate sub-buffers, and primary and secondary threads
work on different sub-buffers at any point of time, maintaining a
distance of least as much as the size of a single sub-buffer.

Synchronizing between primary and secondary is also performed
through the shared data structure. We extended the typical N -way
buffering implementation, by adding a control entry for each sub-
buffer. When the primary finishes updating a sub-buffer, it records
the number of entries it enqueued in the control entry and moves
the next sub-buffer. If the next sub-buffer’s control entry is zero,
the secondary already finished its work, so the primary can proceed
to fill that up as well. Otherwise, the primary waits, periodically
polling the control entry. Likewise, the secondary polls the con-
trol entry to check whether there are data for it to process. When
primary and secondary need to be synchronized (e.g., before the
execution of sensitive system calls), the primary retires early from
its current sub-buffer and waits until the secondary clears up all
entries and updates the control entry with zero, thus synchronizing.
Data Encoding. Data enqueued in the ring buffer belong to one
of the following three groups: (a) effective addresses (EAs), (b)
BBIDs, and (c) control commands. We exploit the fact that valid
EAs point to user-space ranges (0G ∼ 3G range on x86 Linux)
to quickly differentiate them from other entries without using ad-
ditional bits. We map BBIDs and control commands to address
ranges that correspond to kernel space (3G ∼ 4G range on x86
Linux), which immediately differentiates them from EAs that are
always in lower address ranges. This design is easily applicable on
64-bit architectures and other operating systems.

4.3 Support for Multi-threaded Applications
Multi-threaded applications are composed by critical regions,

where they access shared data in a safe manner by acquiring a
lock. To ensure that secondary threads operate on shadow mem-
ory in the same order that the primary threads operated on real
data, we need to identify when a thread enters such a critical re-
gion. We accomplish this by intercepting mutex related calls in
the POSIX threads library, namely pthread_mutex_lock()

and pthread_mutex_unlock(). Our approach can be eas-
ily extended to also support other locking schemes, but currently
does not guarantee shadow memory consistency for shared-data ac-
cesses where no locking is performed.

Lock-protected critical regions are handled as follows. When
one of the primary threads acquires a lock, it waits until its sec-
ondary clears all entries from the ring buffer, essentially synchro-
nizing with the secondary. Every lock in the primary is associ-
ated with a separate ring buffer structure and another secondary
thread attached to it, when it is created. The primary proceeds to
switch its ring-buffer pointer to the one that belongs to the particu-
lar lock and resumes execution. Similarly, when releasing the lock,
the primary synchronizes with the current secondary and resumes
using its original ring buffer. This process ensures that the order of
shadow memory operations is consistent with the order of opera-
tions in the application. In the future, we plan to explore additional
optimizations targeting multi-threaded applications.

5. IMPLEMENTATION
We implemented the dynamic profiler as tool for the Pin DBI

framework in ∼ 3,800 lines of C++. The runtime environment,
responsible for injecting the enqueueing stubs in the application
and hosting the secondary threads, was also build as a tool for Pin
in ∼4,000 lines of C++ code. The code analysis and generation
represents the majority of our effort. It consists of ∼12,000 lines
of Python code.
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Figure 5: Choosing right ring-buffer size.

Currently, all of the secondary’s functionality is implemented as
a single function with labels for each BBL segment. This design
choice was made to exploit the compiler’s intra-procedure opti-
mizations that can better organize the code and improve locality.
An alternate design adopting a function abstraction per BBL cannot
enjoy these optimizations, and would suffer higher function call/re-
turn overheads. We discovered that a large number of labels caused
the GCC compiler to fail due to resource exhaustion when run-
ning CFG related optimizations.3 This currently prevents us from
building a single-function program for applications with more than
∼ 50K BBLs. As a workaround, we divide the analysis program
into multiple sub-functions, where each represents a clustered sub-
graph from the CFG.

Fig. 5 shows how ShadowReplica’s communication cost varies,
as we set the size of the ring-buffer with different values. In this ex-
periment, we ran bzip2 compression against Linux kernel source
(v3.7.10; ∼ 476MB) using a ring buffer comprising of 8 sub-buffers,
and having the secondary only consume data. When the size of
the whole structure is too small (128k), performance suffers due to
L1 cache eviction, as each sub-buffer of 16KB is smaller than the
size of L1 cache (32KB). When it becomes larger performance im-
proves, until it becomes larger than 4096KB, where performance
starts to suffer due to increased L3 cache misses. In our prototype
implementation, we set the ring buffer size to 512KB and config-
ured it with 8 sub-buffers. The size of each sub-buffer is 64KB,
twice as large as our test system’s L1 cache size.

6. EVALUATION
We evaluated ShadowReplica using common command-line util-

ities, the SPEC CPU2006 benchmark suite, and a popular web and
database (DB) server. Our aim is to quantify the performance gains
of our system, and analyze the effectiveness of the various opti-
mizations and design decisions we took. We close this section with
a security evaluation of the DTA and CFI tools we built over Shad-
owReplica.

The results presented throughout this section are mean values,
calculated after running 5 repetitions of each experiment. Our testbed
consisted of an 8-core host, equipped with two 2.66 GHz quad-
core Intel Xeon X5500 CPUs and 48GB of RAM, running Linux
(Ubuntu 12.04LTS with kernel v3.2). Note that ShadowReplica
can run on commodity multi-core CPUs, such as the ones found on
portable PCs. We used a relatively strong server for the evaluation
because it was available at the time. The only crucial resource is
the L3 cache, 32MB in our case, as the communication overhead

3Note that we have filed a bug for this issue [17], but it has not been
completely resolved yet.



Category Application # BBLs # Ins. Unopt
Optimization

Rbuf
# DFT Time

Intra DFT Inter Exec operands (sec.)

Utilities
bzip2 6175 8.59 4.97 2.93 2.62 2.21 1.40 39.70 % 2.69 156.66
tar 8615 5.20 2.31 1.82 1.70 1.53 0.69 33.49 % 4.52 141.79

SPEC2006

473.astar 5069 7.38 4.09 2.48 2.15 2.05 1.40 22.11 % 3.30 89.78
403.gcc 78009 4.37 2.54 1.93 1.84 1.42 0.55 56.87 % 5.57 8341.53
401.bzip2 4588 7.85 4.12 2.75 2.28 2.10 1.27 32.96 % 2.77 109.60
445.gobmk 25939 5.97 3.04 2.11 1.90 1.72 0.95 27.09 % 3.56 674.74
464.h264 11303 5.76 4.88 3.12 3.04 1.72 0.84 74.78 % 3.57 242.67
456.hmmer 7212 19.14 12.62 6.99 6.66 6.34 5.95 59.62 % 6.64 115.81
462.libquantum 3522 9.16 4.66 2.61 2.27 2.04 1.09 56.69 % 3.88 58.09
429.mcf 3752 5.96 3.21 2.12 1.83 1.76 1.06 26.38 % 3.19 57.62
471.omnetpp 15209 5.36 2.88 2.11 1.95 1.80 1.05 6.59 % 3.31 234.35
400.perl 27391 5.71 2.86 1.89 1.82 1.64 0.84 7.79 % 4.47 421.10
458.sjeng 5535 5.29 2.49 1.74 1.65 1.54 0.82 21.51 % 4.07 81.51
483.xalanc 34881 4.79 2.02 1.54 1.44 1.34 0.50 21.40 % 5.97 1189.45

Server Apache 23079 8.39 3.17 1.91 1.84 1.6 1.05 28.08 % 5.57 706.63
application MySQL 40393 6.87 4.21 2.19 2.08 1.80 1.10 11.00 % 5.42 1486.60

Average 18792 7.24 4.17 2.52 2.32 2.04 1.29 32.88 % 4.28 881.74

Table 1: Results from static analysis. Unopt indicates the number of enqueue operations that a naive implementation requires. The

Intra, DFT, Inter, and Exec columns correspond to the number of enqueue operations after progressively applying our intra-block,

DFT, inter-block, and control flow optimizations. Rbuf shows the percentage of BBLs that need to be instrumented with analysis

code that checks for ring buffer overflows. # DFT operands shows the operands from the secondary’s analysis body. The last column,

Time, shows the time for offline analysis.

heavily depends on its size. The version of Pin used during the eval-
uation was 2.11 (build 49306). While conducting our experiments
hyper-threading was disabled and the host was idle.

6.1 Effectiveness of Optimizations
Table 1 summarizes the effects our optimizations had on reduc-

ing the amount of information that needs to be communicated to
the secondary, and the effectiveness of the ring buffer fast checking
optimization. The # BBLs column indicates the number of distinct
BBLs discovered for each application, using the profiling process
outlined in Sec. 3.1. # Ins. gives the average number of instruc-
tions per BBL. The Unopt column shows the average number of
enqueue operations to the ring buffer that a naive implementation
would require per BBL. The Intra, DFT, Inter, and Exec columns
correspond to the number of enqueue operations after progressively
applying the intra-block, DFT, and inter-block optimizations pre-
sented in Sec. 3.2.1, as well as the optimizations related to control
flow recording (Sec. 3.2.2). Rbuf shows the percentage of BBLs
that need to be instrumented with checks for testing if the ring
buffer is full, according to the fast checking algorithm (Sec. 3.2.3).
# DFT operands, shows per BBL average number of register and
memory operands appeared from the secondary’s analysis body.
The last column, Time shows the time for offline analysis to gener-
ate codes for the primary and the secondary.

On average, a naive implementation would require 4.17 enqueue
operations per BBL, for communicating EAs and control flow in-
formation to the secondary, and instrument 100% of the BBLs with
code that checks for ring buffer overflows. Our optimizations re-
duce the number of enqueueing operations to a mere 1.29 per BBL,
while only 32.88% of BBLs are instrumented to check for ring
buffer overflows. A reduction of 67.12%.

While offline analysis requires a small amount of time (on aver-
age 881 sec.) for most programs, 403.gcc takes exceptionally long
(8341 sec.) to complete. This is due to the program structure, which
has a particularly dense CFG, thus making the Rbuf optimization
wasting a long time (∼ 6500 sec.) only to enumerate all available
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Figure 6: The slowdown of the primary process imposed by

ShadowReplica, and the effects of our optimizations, when run-

ning bzip2 and tar.

cycles to perform the analysis described in Sec. 3.2.3. We believe
that this can be alleviated by parallelizing the algorithm.

To evaluate the impact of our various optimizations on the pri-
mary’s performance, we used two commonly used Unix utilities,
tar and bzip2. We selected these two because they represent dif-
ferent workloads. tar performs mostly I/O, while bzip2 is CPU-
bound. We run the GNU versions of the utilities natively and over
ShadowReplica, progressively enabling our optimizations against a
Linux kernel source “tarball” (v3.7.10; ∼476MB).

We measured their execution time with the Unix time utility
and draw the obtained results in Fig. 6. Unopt corresponds to the
runtime performance of an unoptimized, naive, implementation,
whereas Intra, DFT, Inter, Exec, and RBuf demonstrate the bene-
fits of each optimization scheme, when applied cumulatively. With
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Figure 7: Running the SPEC CPU2006 benchmark suite with

all optimizations enabled. Primary denotes the slowdown of the

primary thread alone. Primary+Secondary is the overhead of

ShadowReplica when it performs full-fledged DFT. In-line cor-

responds to the slowdown imposed when the DFT process exe-

cutes in-line with the application.

all optimizations enabled, the slowdown imposed to bzip2 drops
from 5×/4.13× down to 2.23×/1.99× for compress/decompress
(55%/51.82% reduction). Similarly, tar goes from 2.26×/1.94×
down to 1.71×/1.53× for archive/extract (24.33%/ 21.13% reduc-
tion). It comes as no surprise that I/O bound workloads, which
generally also suffer smaller overheads when running with in-lined
DFT, benefit less from ShadowReplica. We also notice that Intra

and RBuf optimizations have larger impact on performance.

6.2 Performance
SPEC CPU2006. Fig. 7 shows the overhead of running the

SPEC CPU2006 benchmark suite under ShadowReplica, when all

optimizations are enabled. Primary corresponds to the slowdown
imposed by the primary thread alone. Primary+Secondary is the
overhead of ShadowReplica when both the primary and secondary
threads and running, and the secondary performs full-fledged DFT.
Finally, In-line denotes the slowdown imposed when the DFT pro-
cess executes in-line with the application, under our accelerated
DFT implementation [18]. On average, Primary imposes a 2.72×
slowdown on the suite, while the overhead of the full scheme (Pri-

mary+Secondary) is 2.75×. In-line exhibits a 6.37× slowdown, in-
dicating the benefits from the decoupled and parallelized execution
of the DFT code (56.82% reduction on the performance penalty).

During our evaluation, we noticed that for some benchmarks (as-
tar, perlbmk, gcc, sjeng) the slowdown was not bound to the pri-
mary, but to the secondary. These programs generally required a
high number of DFT operands to be sent to the secondary (# DFT

operands from Table 1) compared to the number of enqueued en-
tries.

The significant slowdown with the h264ref benchmark was due
to the way Pin handles rep-prefixed string instructions (i.e., rep
movs, rep cmps), heavily used in this benchmark. Pin assumes
that the tool developer wants to instrument each one of these rep-
etitions and transforms these instructions into explicit loops, in-
troducing additional overhead. However, our DFT-specific repre-
sentation [18], which captures source, destination, and offset from
these instructions, does not require such a transformation. We used
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Figure 8: The slowdown incurred by ShadowReplica on the

Apache web server and MySQL DB server.

one of Pin’s command-line options to disable this feature, which
reduced our slowdown in this benchmark from 5× to 3.05×.

Apache and MySQL. We proceed to evaluate ShadowReplica
with larger and more complex software. Specifically, we inves-
tigate how ShadowReplica behaves when instrumenting the com-
monly used Apache web server. We used Apache v2.2.24 and let
all options to their default setting. We measured Apache’s perfor-
mance using its own utility ab and static HTML files of different
size. In particular, we chose files with sizes of 1KB, 10KB, 100KB,
and 1MB, and run the server natively and with ShadowReplica
with all optimizations enabled. We also tested Apache with and
without SSL/TLS encryption (i.e., SSL and Plaintext, respectively).
Fig. 8 (a) illustrates our results. Overall, ShadowReplica has a 24%
performance impact, on average, when Apache is serving files in
plaintext. Unsurprisingly, the slowdown is larger when running on
top of SSL (62%). The reason behind this behavior is that the inten-
sive cryptographic operations performed by SSL make the server
CPU-bound. In Fig. 8 (b), we present similar results from evaluat-
ing with the MySQL DB server, a multi-threaded application which
spawned 10 ∼ 20 threads during its evaluation. We used MySQL
v5.0.51b and its own benchmark suite (sql-bench), which con-
sists of four different tests that assess the completion time of var-
ious DB operations like table creation and modification, data se-
lection and insertion, etc. The average slowdown measured was
3.02× (2.17× – 3.5×).

6.3 Computational Efficiency
One of the goals of ShadowReplica was to also make DFT more

efficient computation-wise. In other words, we not only desired to
accelerate DFT, but also do it using less CPU resources. To evaluate
this aspect of our approach, we chose two benchmarks from the
SPEC CPU2006 suite; 401.bzip2 and 400.perl. Our choice was was
not arbitrary. During our performance evaluation, we observed that
in the first benchmark, DFT was running faster than the application.
Performance is, hence, bound by the primary thread. On the other
hand, in the second benchmark the secondary thread, performing
DFT, was slower, hence its performance is bound by the secondary
thread.

We run ShadowReplica and our accelerated in-line DFT imple-
mentation with these two benchmarks, and measured their CPU
usage using the perf tool. Fig. 9 presents the results of our exper-
iment. We run ShadowReplica with both primary and secondary
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Figure 9: Aggregated CPU time consumed by two SPEC
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owReplica, we draw the CPU time taken by the primary and

secondary threads separately. A darker horizontal line shows

the threshold above which the secondary dominates CPU us-

age.

Application Vulnerability CVE-ID

exim-4.69 Format string CVE-2010-4344
proftpd-1.3.3a Stack overflow CVE-2010-4221
nginx-0.6.32 Buffer underflow CVE-2009-2629

memcached 1.1.12 Integer overflow CVE-2009-2415
htget-0.93 Stack overflow CVE-2004-0852

WsMp3-0.0.8 Heap overflow CVE-2003-0338
athttpd-0.4b Buffer overflow CVE-2002-1816

Table 2: ShadowReplica-{DTA, CFI} successfully prevented

the listed attacks.

threads running, having the secondary perform no analysis (No

analysis), implementing DFT using all optimizations (DFT), and
without the FastPath optimization from LIFT [28] (DFT (NO FP)).
The last column (in-line DFT) shows the result for a DFT imple-
mentation that in-lines the analysis to the application process [18].
CPU usage is partitioned to show the amount of CPU cycles taken
from the primary and secondary threads separately. The darker hor-
izontal line visualizes the tipping point where the secondary thread
starts dominating performance (i.e., it is slower than the primary),
when we are running ShadowReplica with DFT and all optimiza-
tions enabled.

A take-out from these results is that the aggregated CPU usage
of ShadowReplica is less or equal than that of in-line DFT analysis.
In other words, we manage to satisfy equation 1 from Sec. 2.1. As-
toundingly, in the case of 401.bzip2, we are so much more efficient
that we require ∼30% less CPU cycles to apply DFT.

6.4 Security
The purpose of developing the DTA and CFI tools over Shad-

owReplica was not to provide solid solutions, but to demonstrate
that our system can indeed facilitate otherwise complex security
tools. Nevertheless, we tested their effectiveness using the set of
exploits listed in Table 2. In all cases, we were able to successfully
prevent the exploitation of the corresponding application.

During the evaluation, DTA did not generate any false positives,
achieving the same level of correctness guarantees to our previous
DFT implementation [19, 18]. However, CFI suffered from some
false positives due to the inability to obtain an accurate CFG by
static and dynamic profiling. We leave the task of improving the
soundness of CFG as a future work.

Having DTA and CFI implemented mostly from the secondary,
performance overhead was negligible by having ∼ 5% slowdown.

7. RELATED WORK
The idea of decoupling dynamic program analyses from execu-

tion, to run them in parallel, has been studied in past in various
contexts [31, 8, 25, 33, 14, 26, 6]. Aftersight [8], ReEmu [6], and
Paranoid Android [26] leverage record and replay for recording ex-
ecution and replaying it, along with the analysis, on a remote host
or a different CPU (replica). They are mostly geared toward off-
line analyses and can greatly reduce the overhead imposed on the
application. However, the speed of the analysis itself is not im-
proved, since execution needs to be replayed and augmented with
the analysis code on the replica.

SuperPin [31] and Speck [25] use speculative execution to run
application and (in-lined) analysis code in multiple threads that ex-
ecute in parallel. These systems sacrifice significant processing
power to achieve speed up. Furthermore, handling multi-threaded
applications without hardware support remains a challenging issue
for this approach.

CAB [14] and PiPA [33] aim at offloading the analysis code
alone to another execution thread, and they are the closest to Shad-
owReplica. However, neither of the two has been able to deliver
the expected performance gains, due to (a) naively collecting infor-
mation from the application, and (b) the high overhead of commu-
nicating it to the analysis thread(s). This paper demonstrated how
to tackle these problems.

DFT has been broadly used in the security domain but also else-
where. TaintCheck [24] utilizes DTA for protecting binary-only
software against buffer overflows and other types of memory cor-
ruption attacks. It applies DTA, using Valgrind [23], to detect ille-
gitimate uses of network data that could enable attackers to seize
control of vulnerable programs. Panorama [32] makes use of DTA
for analyzing malware samples similarly to Argos [27]. Taint-
Bochs [9] utilizes a whole system emulator for studying the life-
time of sensitive data, whereas TaintEraser [34] relies on DTA for
preventing sensitive information leaks. ConfAid [3] leverages DFT
for discovering software misconfigurations. Dytan [10] is a flexible
DFT tool, allowing users to customize its data sources and sinks,
as well as the propagation policy, while it can also track data based
on control-flow dependencies.

8. CONCLUSION
We presented ShadowReplica, a new and efficient approach for

accelerating DFT and other shadow memory-based analyses, by de-
coupling analysis from execution and utilizing spare CPU cores to
run them in parallel. We perform a combined off-line dynamic and
static analysis of the application to minimize the data that need to be
communicated for decoupling the analysis, and optimize the code
used to perform it. Furthermore, we design and tune a shared ring
buffer data structure for efficiently sharing data between threads on
multi-core CPUs. Our evaluation shows that performing DFT us-
ing ShadowReplica is more than 2× faster and uses up to 30% less
CPU cycles than in-line DFT. Although the overall performance
impact of DFT remains significant, we hope that our optimizations
will bring it closer to becoming practical for certain environments.
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