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Abstract

Protecting commodity systems running commercial Op-
erating Systems (OSes) without significantly degrading per-
formance or usability still remains an open problem. To
make matters worse, the overall security depends on com-
plex applications that perform multiple inter-dependent
tasks with Internet-borne code. Recent research has shown
the need for context-dependent trustworthy environments
that can segregate different user activities to lower risk of
cross-contamination and safeguard private information.

In this paper, we introduce a novel BIOS-assisted mech-
anism for secure instantiation and management of trusted
execution environments. A key design characteristic of our
system is usability: the ability to quickly and securely switch
between operating environments without requiring any spe-
cialized hardware or code modifications. Our aim is to
eliminate any mutable, non-BIOS code sharing while se-
curely reusing existing hardware: even when an untrusted
environment is compromised, there is no potential for exfil-
tration or inference attacks. To safeguard against spoofing
attacks, we can force the user to physically set a hardware
switch, an action that cannot be reproduced by software.
In addition, we provide visible indication to the user about
the current running environment leveraging one of the front
panel Light Emitting Diodes (LEDs). In our prototype, the
entire switching process takes approximately six seconds on
average. This empowers users to frequently and seamlessly
alternate between trusted and untrusted environments.
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1. Introduction

Nowadays, desktop computers are being employed for
multiple tasks ranging from personal communication and
entertainment to business and government operations: web
browsing, online gaming, and social web portals are exam-
ples in the former category; online banking, shopping, and
business emails belong in the latter. Unfortunately, modern
software has a large and complex code base that typically
contains a number of vulnerabilities [6]. To make matters
worse, modern desktop applications usually operate on for-
eign content that is received over the network. Current op-
erating system (OS) environments offer user- and process-
level isolation for different activities; however, these lev-
els of isolation can be easily bypassed by malware through
privilege escalation or by other attacking techniques. Re-
searchers have pointed out the need for trustworthy environ-
ments where, based on context and requirements, the user
can segregate different activities in an effort to lower risk by
reducing the attack space and data exposure.

There are ongoing research and commercial efforts to
employ virtual machine monitors (VMMs, also referred to
as hypervisors) to isolate different activities and applica-
tions [43, 20, 21, 29, 46, 28, 45, 22]. As long as the vir-
tual machine monitor is not compromised and there is no
exposed path or covert channel between the different en-
vironments, applications in different VMs remain isolated.
However, their widespread adoption has attracted the atten-
tion of attackers towards VMM vulnerabilities [48, 38, 31].
According to IBM X-Force 2010 mid-year trend and risk
report [4], from 1999 through the end of 2009, 373 vulnera-
bilities affecting virtualization solutions were disclosed, and
35.0% virtualization vulnerabilities on the server products
allowed an attacker to escape from a guest VM to affect
other VMs, or the VMM itself. Researchers have noticed
this problem and have begun to improve hypervisor secu-
rity [45, 13, 44].



An alternative or sometimes complementary approach
to software isolation is hardware isolation: in many mil-
itary and civilian installations users have to use multiple
physically-isolated computers, merely switching controls
and displays. Although attractive in terms of isolation, hard-
ware increases the operational and maintenance cost be-
cause it requires more space, cooling, and energy. It is
inflexible and cannot support the current need for a range
of trusted environments. Moreover, it is inconvenient for
users to switch between two computers to finish their tasks.
Multi-boot supports the installation of multiple OSes on the
same machine and uses a boot loader to choose between
the OSes. Unfortunately, it is time consuming to shutdown
one OS and boot up another. For instance, Lockdown [41]
combines a hypervisor with ACPI S4 Sleep (also known as
hibernation or Suspend to Disk) to provide a secure envi-
ronment for sensitive applications. However, the switching
latency in many cases is more than 40 seconds, rendering
the system difficult to use in practice.

In this paper, we attempt to tackle the secure OS isolation
problem without using a hypervisor or any mutable shared
code. We design a firmware-assisted system called Se-
cureSwitch, which allows users to switch between a trusted
and an untrusted operating system on the same physical ma-
chine with a short switching time. The basic input/output
system (BIOS) is the only trusted computing base that en-
sures the resource isolation between the two OSes and en-
forces a trusted path for switching between the two OSes.
The attack surface in our system is significantly smaller than
hypervisor- or software-based systems; we can protect the
integrity of the BIOS code by using a hardware lock [5] to
set the BIOS code as read-only, or by using TPM to verify
the integrity of the BIOS code. Furthermore, our system
guarantees a strong resource isolation between the trusted
and untrusted OSes. If the untrusted OS has been compro-
mised, it still cannot read, write, or execute any of the data
and applications in the trusted OS.

Overall, our system can ensure isolation on the following
computer components:

• Memory Isolation: All OS environments run in
separate Dual In-line Memory Modules (DIMM). A
physical-level memory isolation is ensured by the
BIOS because only the BIOS can initialize and en-
able the DIMMs. No software can initialize or enable
DIMMs after the system boots up.

• CPU Isolation: The different operating systems never
run concurrently. When one OS is switched off, all
CPU states are saved and flushed. We use ACPI S3
sleep mode to help achieve CPU suspend/restore.

• Hard Disk Isolation: Each OS can have its own ded-
icated encrypted hard disk. We use RAM disk to save

the temporary sensitive data in the trusted OS. The un-
trusted OS cannot access the RAM disk in the trusted
OS due to the memory isolation.

• Other I/O Isolation: When one OS is switched off, all
contents maintained by the device drivers (e.g, graphic
card, network card) are saved and the devices are then
powered off. This guarantees that the untrusted OS
cannot steal any sensitive data from the I/O devices.

A trusted path ensures users that they really are working
with the operation system they intend to use. We must en-
sure a trusted path to prevent Spoofing Trusted OS attacks
that deceive users into a fake trusted OS environment when
the users switch from the untrusted OS to the trusted OS.
For instance, a sophisticated adversary may fake an S3 sleep
in the untrusted OS by manipulating the hardware (e.g.,
shutting down the monitor) and then deceiving the user with
a fake trusted OS environment, which is controlled by the
untrusted OS. Because the BIOS is the only component that
we can trust to enforce the trusted path, we use the power
button and power LED to ensure and indicate the user that
the system enters the BIOS after one OS has been truly sus-
pended. Then, the BIOS will wake up one OS according to
a system variable that indicates which OS should be woken.
The system variable can only be manually changed by the
user; it cannot be changed by any software.

We harness the Advanced Configuration and Power In-
terface (ACPI) [24] S3 sleep mode to help achieve a short
OS switching latency. Because two OSes are maintained
in RAM memory at the same time, the switching latency is
only about six seconds, which is much faster than switching
between two OSes on a multi-boot computer or switching
using ACPI S4 mode [41]. It is slower than the hypervisor-
based solutions; however, we don’t need to worry about the
potential vulnerabilities in the hypervisor. Moreover, our
system can be used as a complementary approach to exist-
ing hypervisor- and OS-protection solutions.

In summary, we make the following contributions:

• Secure OS switching without using any mutable soft-
ware layer. Our system depends on the BIOS and
existing hardware properties to enforce a discernible
trusted path when switching between the two OSes.
This trusted path can prevent a wide-range of attacks
including the Spoofing Trusted OS attacks. Our ap-
proach requires no modification of the commodity OS.

• No data leak between different environments. The re-
source isolation enforced by the BIOS prevents any
data leak from the trusted OS to the untrusted OS.

• Fast Switching Time. We implemented a prototype of
the secure switching system using commodity hard-
ware and both commercial and open source OSes (Mi-



crosoft Windows and Linux). Our system can switch
between OSes in approximately six seconds.

2. Background

2.1. ACPI Sleeping States

The Advanced Configuration and Power Interface
(ACPI) establishes industry-standard interfaces that enable
OS-directed configuration, power management, and ther-
mal management of computer platforms [24]. ACPI defines
four global states: G0, G1, G2, and G3. G0 is the working
state wherein a machine is fully running. G1 is the sleep-
ing state that achieves different levels of power saving. G2
is called “Soft Off,” wherein the computer consumes only
a minimal amount of power. In G3, the computer is com-
pletely shutdown; aside for the real-time clock, the power
consumption is zero.

G1 is subdivided into four sleeping states: S1, S2, S3,
and S4. From S1 to S4, the power saving increases, but the
wakeup time also increases. In S3, all system context (i.e.,
CPU, chipset, cache) aside from the RAM is lost. S3 is also
referred to as Standby or Suspend to RAM. In S4, all main
memory content is saved to non-volatile memory, such as
a hard drive, and the machine (including RAM) is powered
off. S4 is also referred to as Hibernation or Suspend to Disk.
In both S3 and S4, all of the devices may be powered off.

Not every machine or operating system supports all of
the ACPI states. For instance, neither S1 or S2 is used by
Windows. S3 and S4, however, are supported by all Linux
2.4 and 2.6 series kernels and recent Windows distributions
(XP, Vista, 7). Our SecureSwitch uses S3 operations pro-
vided by the operating system to help save the system con-
text and later restore it. This dramatically saves our devel-
oping efforts.

2.2. BIOS, UEFI and Coreboot

The BIOS is an indispensable component for all com-
puters. The main function of the BIOS is to initialize the
hardware, including processor, main memory, chipset, hard
disk, and other necessary IO devices. BIOS code is nor-
mally stored on a non-volatile ROM chip on the mother-
board. In recent years, a new generation of BIOS, referred
to as Unified Extensible Firmware Interface (UEFI) [9], has
become increasingly popular in the market. UEFI is a speci-
fication that defines the new software interface between OS
and firmware. One purpose of UEFI is to ease the devel-
opment by switching to the protected mode in a very early
stage and writing most of the code in C language. A portion
of the Intel UEFI framework (named Tiano Core) is open
source; however, the main function of the UEFI (to initial-
ize the hardware) is still closed source.

Coreboot [2] (formerly known as LinuxBIOS) is an
open-source project aimed at replacing the proprietary
BIOS (firmware) in most of today’s computers. It performs
a small amount of hardware initialization and then executes
a so-called payload. Similar to the UEFI-based BIOS, Core-
boot also switches to protected mode in a very early stage
and is written mostly in C language. Our prototype imple-
mentation is based on Coreboot V4. We chose to use Core-
boot rather than UEFI since Coreboot has done all of the
work of hardware initialization, whereas we would need to
implement UEFI firmware from scratch, including obtain-
ing all of the data sheets for our motherboard.

2.3. SMM

System Management Mode (SMM) is a separate CPU
mode from the protected mode and real address mode.
It provides a transparent mechanism for implementing
platform-specific system-control functions, such as power
management and system security. SMM is primarily tar-
geted for use by the basic input-output system (BIOS) and
specialized low-level device drivers.

SMM is entered via the system management inter-
rupt(SMI), when the SMM interrupt pin (SMI#) is asserted
by motherboard hardware, chipset, or system software. At
the next instruction boundary, the microprocessor saves its
entire state in a separate address space known as system
management RAM (SMRAM) and enters SMM to execute
a special SMM handler. The SMRAM can be made inacces-
sible from other CPU operating modes; therefore, it can act
as trusted storage, sealed from access by any device or even
the CPU (while not in SMM mode). The program executes
the RSM instruction to exit SMM. Our system includes an
SMM handler to monitor the hard disk isolation between
two OSes.

2.4. DQS Settings and DIMM MASK

There are many different types of RAM, and one of the
most popular ones is the Double Data Rate Synchronous
Dynamic Random Access Memory (DDR SDRAM). One
feature of these DDR memories is that they include a spe-
cial electrical signal referred to as “data strobes” (DQS). For
proper memory reads to occur, the DQS must be properly
timed to align with the data valid window of the data (DQ)
lines. The data valid window refers to the specific period
of time when the DRAM chip drives (i.e., makes active) the
DQ lines for the memory controller to read its data. If the
DQS signal is not properly aligned, the memory access will
fail. For DDR1, the parameters of DQS can be automati-
cally set by the hardware. For DDR2 and DDR3, the DQS
settings should be programmed by the BIOS [11]. We use
DDR2 memory in our system.



A motherboard usually has more than one DIMM slot.
Our system assigns one DIMM to one OS. When one OS is
running, the BIOS will only enable the DIMM assigned to
that OS with the corresponding DQS settings. BIOS uses a
variable named “DIMM MASK” to control which DIMMs
should be enabled.

3. Threat Model and Assumptions

Our system operates under the assumption that an adver-
sary can potentially subvert the untrusted OS using known
or zero-day attacks on software applications, device drivers,
user-installed code, or operating system. In addition, we as-
sume that the attacker does not have physical access to the
protected machine and thus cannot mount local physical at-
tacks, such as removing a hard disk or a memory DIMM.

However, an adversary may launch any class of attacks
against the trusted OS after compromising the untrusted OS.
For instance, a data exfiltration attack aims at stealing sen-
sitive data from the trusted OS. Furthermore, the adversary
may attempt to modify the code of trusted OS and com-
promise its integrity. In a Spoofing Trusted OS attack, a
sophisticated attacker can create a fake trusted OS environ-
ment, which is fully controlled by the attacker, and deceive
the user into performing sensitive transactions there. An at-
tacker can perform a denial-of-service (DoS) attack against
the trusted OS by forcing the untrusted OS to terminate or
crash; however, since such attacks can be easily detected
and resolved; we do not prevent DoS attacks against our
system. Another class of attacks is the direct or indirect
“inference” attack: an attacker is able to identify instances
of secure OSes running at the same physical machine as in-
secure instances with the purpose of inferring run-time be-
havior. Due to its design to not run in parallel instances of
OSes, our system is impervious to this class of attacks.

There is an implicit assumption that the trusted OS can
be trusted when the BIOS boots it up, but this does not
mean that the trusted OS is bug-free. In other words,
the trusted OS may be compromised from network at-
tacks using vulnerabilities within the OS or the applications.
There are several mechanisms to alleviate these network at-
tacks [19, 16, 15]; however, they lie beyond the scope of
this paper.

Furthermore, we assume that BIOS and device firmware
code, including the option ROMs on devices (e.g., video
cards) and peripherals (e.g., mouse and keyboard), are not
susceptible to a direct or indirect compromise that can sub-
vert the control flow during or after the sleep/wake-up cy-
cle. In addition, the operating system must support ACPI
S3 sleeping mode. This mode has been widely supported
by modern OSes, such as Linux and Windows. Our system
does not require any hardware virtualization support includ-
ing Intel VT-x and AMD-V.

4. SecureSwitch Framework

The overall architecture of the SecureSwitch system is
depicted in Figure 1: two OSes are loaded into the RAM at
the same time. Commercial OSes that support ACPI S3 can
be installed and executed without any changes. Instead of
relying on a hypervisor, we modify the BIOS to control the
loading, switching, and isolation between the two OSes.

Figure 1. Architecture of SecureSwitch Sys
tem

The Secure Switching operation consists of two stages:
OS loading stage and OS switching stage. In the OS load-
ing stage, the BIOS loads two OSes into separated physi-
cal memory space. The trusted OS should be loaded first
and the untrusted OS second. In the OS switching stage,
the system can suspend one OS and then wake up another.
In particular, it must guarantee a trusted path against the
spoofing trusted OS attack when the system switches from
the untrusted OS to the trusted OS.

The system must guarantee a thorough isolation between
the two OSes. Usually one OS is not aware of the other
co-existing OS in the memory. Even if the untrusted OS
has been compromised and can detect the coexisting trusted
OS on the same computer, it still cannot access any data or
execute any code on the trusted OS.

4.1. Secure Switching

Figure 2 shows the state machine for loading and switch-
ing between two operating systems in the system. Two vari-
ables are maintained to denote the system states. In each
parenthesis, the first number records which OS is running
in the system (1 for the trusted OS and 0 for the untrusted
OS); the second number records if the untrusted OS has
been loaded into the system.

When the machine is powered off, the system state is
(0,0). After the system is powered on, the BIOS always



Figure 2. State Machine for OS Switching.

boots up the trusted OS (OS1) first. The BIOS constrains
the trusted OS to use only part of the physical RAM. The
trusted OS can be shut down or can perform sleep/wakeup.
(1,0) means the trusted OS has been loaded and is running
now, but the untrusted OS has not been loaded. When load-
ing the untrusted OS(OS2), the BIOS first suspends the
trusted OS, and then boots up the untrusted OS into the
non-allocated physical RAM, which has no overlap with
the memory used by the trusted OS. (0,1) means both OSes
have been loaded into the memory while the untrusted OS
is running and the trusted OS is suspended. If a user wants
to switch from the untrusted to the trusted OS, the untrusted
OS will be suspended first and then the system will wake up
the trusted OS. At this time, the system state is (1,1). Sim-
ilarly, the user can switch back from the trusted OS to the
untrusted OS. To save power energy, the system still sup-
ports the normal OS sleep/wakeup.

4.1.1 Stateful vs. Stateless Trusted OS

When the system switches into the trusted OS, there are two
options for restoring the OS context: Stateless mode and
Stateful mode. In the stateless mode, each time when the
system switches into the trusted OS, it starts from a pris-
tine state. A copy of the trusted OS in its pristine state is
maintained either on the hard disk or in a reserved memory
area. In the stateful mode, when the trusted OS is switched
in, it resumes from the system context wherein it was last
switched out. All states of the trusted OS should be saved
in the memory or on the hard disk.

The stateless mode does not save any system state when
the trusted OS is switched out. It can mitigate the impacts of
network attacks since the trusted OS will start from a pris-
tine state that has not been compromised. The drawback is
that the user loses the system context, so it cannot resume
previous sessions or tasks within the trusted OS. Moreover,
an adversary may easily fake a trusted OS environment if it
knows the pristine state of the OS. In a stateful mode, since

all of the system states are saved and can be restored, a user
may resume sessions and tasks within the trusted OS. How-
ever, when the trusted OS has been continuously used for
a long time, the risk of being compromised from network
attacks increases.

4.1.2 Trusted Path

In our system, a trusted path assures users that they really
are working with the operation system they intend to use.
Our system must ensure a trusted path to prevent Spoof
Trusted OS attacks, which deceive users into a fake trusted
OS environment when the users switch from the untrusted
OS to the trusted OS.

The secure switching consists of two sequential steps:
OS Suspend and OS Wakeup. In x86 architecture, the sus-
pend step is performed entirely by the operating system
without involving the BIOS; the wakeup step is initiated by
the BIOS and then handed over to the OS. Since the BIOS is
the only component that we can trust to enforce the trusted
path, we must guarantee the OS has been truly suspended
so that the BIOS will be triggered. Otherwise, an attacker
may launch a spoofing trusted OS attack by faking a sus-
pend of the untrusted OS (e.g., power off the monitor) that
totally circumvents the BIOS and then deceiving the user
into a fake trusted OS. The untrusted OS can create such a
fake trusted OS environment by installing a virtual machine
similar to the trusted OS [26].

It is critical to protect the integrity of the system vari-
able that is used by the BIOS to decide which OS should
be woken up. Otherwise, when a user wants to switch from
the untrusted OS to the trusted OS, an attacker may launch
another spoof trusted OS attack by manipulating the system
variable to make the BIOS wake up the untrusted OS and
then deceiving the user into a fake trusted OS environment.
In our system, the system variable is controlled by a phys-
ical jumper, which can only be manually set by the local
user. The design details are described in Section 5.2.1.

4.2. Secure Isolation

The system must guarantee a strong isolation between
the two OSes to protect the confidentiality and integrity of
the information on the trusted OS. According to the von
Neumann architecture, we must enforce the resource isola-
tion on major computer components, including CPU, mem-
ory, and I/O devices.

CPU Isolation: When one OS is running directly on a phys-
ical machine, it has full control of the CPU. Therefore, the
CPU contexts of the trusted OS should be completely iso-
lated from that of the untrusted OS. In particular, no data
information should be left in CPU caches or registers after
one OS has been switched out.



CPU isolation can be enforced in three steps: saving the
current CPU context, clearing the CPU context, and load-
ing the new CPU context. For example, when one OS is
switching off, the cache is flushed back to the main mem-
ory. When one OS is switching in, the cache is empty. The
content of CPU registers should also be saved separately for
each OS and isolated from the other OS.

Memory Isolation: It is critical to completely separate the
RAM between the two OSes so that the untrusted OS can-
not access the memory allocated to the trusted OS. A hy-
pervisor can control and restrict the RAM access requests
from the OSes. Without a hypervisor, our system includes a
hardware solution to achieve memory isolation. The BIOS
allocates non-overlapping physical memory spaces for two
OSes and enforces constrained memory access for each OS
with a specific hardware configuration (DQS and DIMM
Mask) that can only be set by the BIOS. The OS cannot
change the hardware settings to enable access to the other
OS’s physical memory. Details regarding this are included
in Section 5.3.

I/O Device Isolation: Typical I/O devices include hard
disk, keyboard, mouse, network card (NIC), graphics card
(VGA), etc. The running OS has full control of these I/O
devices. For devices with their own volatile memory (e.g.,
NIC, VGA), we must guarantee that the untrusted OS can-
not obtain any information remaining within the volatile
memory (e.g., pixel data in the VGA buffer) after the trusted
OS has been suspended. When a stateful trusted OS is
switched out, the device buffer should be saved in the RAM
or hard disk and then flushed. when a stateless trusted OS
is switched out, the device buffer is simply flushed.

For I/O devices with non-volatile memory (e.g., USB,
hard disk), the system must guarantee that the untrusted OS
cannot obtain any sensitive data information from the I/O
devices used by the trusted OS. One possible solution is to
encrypt/decrypt the hard disk when the trusted OS is sus-
pended/woken. However, this method will increase the OS
switching time due to costly encryption/decryption opera-
tions. Another solution is to use two hard disks for two
OSes separately, and use BIOS(SMM) to ensure the isola-
tion. When we are targeting at browser-based applications
that don’t need to keep local state, as opposed to a local
copy of TurboTax, it is secure to save the temporary sen-
sitive data in a RAM disk, which can maintain its content
during OS sleep, but gets cleaned when the system reboots.
Details can be found in Section 5.3.

5. Overall System Design

We combine the BIOS and the standard ACPI S3 mode
to enforce resource isolation between the two OSes. BIOS
is the control center and the only trusted computing base

to enforce a trusted path during the OS switching process.
Our system uses ACPI S3 to support both secure switching
and the normal OS sleep/wakeup. The BIOS uses two sys-
tem variables to control the OS loading and switching pro-
cess. An OS flag indicates which OS (and corresponding
resources) should be started; a Boot flag indicates whether
the untrusted OS has been loaded into the memory.

5.1. Bootstrapping Two OSes

During the OS bootstrapping stage, the system loads
both OSes in the RAM from the hard drive. To enforce
RAM isolation and hard disk isolation, our system requires
the motherboard to support at least two DIMMs and two
hard disks, and it assigns one DIMM and one hard disk
to each OS. When the computer boots up from a power-
off state, the BIOS first loads the trusted OS using only
one DIMM. Because BIOS is responsible for detecting and
initializing the memory controller, it can enable and report
only half of the RAM to each OS. Similarly, the BIOS only
enables and reports one hard disk for each OS.

After the system is powered on, the BIOS always boots
up the trusted OS first. To load the untrusted OS, the trusted
OS should be suspended in S3 sleep. Then, the BIOS tries to
wake up the untrusted OS when the OS flag is set to 0. How-
ever, the untrusted OS has not been loaded into the RAM at
this time. To solve this problem, we use a Boot flag to indi-
cate whether the untrusted OS has been loaded. When the
system is powered on, the Boot flag is reset to 0 to reflect
that the untrusted OS has not been loaded. When the BIOS
detects that it is trying to wake up an untrusted OS that has
not been loaded, it will load the untrusted OS and then set
the Boot flag to 1.

One major drawback of this method is that the granular-
ity for memory allocation is the size of DIMM. When one
OS is running, only a portion of the RAM in the system can
be used. We consider this the price of enhancing system
security and plan to improve it in the future work.

5.2. Switching Between Two OSes

OS switching is conducted by both the operating sys-
tem and the BIOS. After both OSes have been loaded into
the memory, the switching is done by putting the currently-
running OS into ACPI S3 sleep mode and then waking up
the other OS from ACPI S3 sleep mode. We use ACPI S3
sleep/wakeup because it has defined functionality to save
the CPU context and hardware devices’ states. In ACPI
S3 sleep mode, the CPU stops executing any instruction,
and the CPU context is not maintained. The operating sys-
tem will flush all dirty cache to RAM. The RAM context is
maintained by placing the memory into a low-power self-
refresh state. Only those devices that reference power re-



Figure 3. Switching Flow from Untrusted OS to Trusted OS.

sources are in the ON state. All the other devices (e.g.,
VGA, NIC) are in the D3 (OFF) state while their states are
saved by the OS or the device drivers.

Figure 3 shows the control flow when the system is
switching from the untrusted OS to the trusted OS. The user
first suspends the untrusted OS by executing a userspace
program or clicking a pre-defined Standby button, which is
responsible for saving the CPU context and hardware de-
vices’ states. Afterwards, both OSes stay in the ACPI sleep
mode. The user manually sets a physical jumper to indicate
the BIOS that the trusted OS should be woken up next. In
other words, the physical jumper controls the value of the
OS flag. The user then presses the power button to wake
up the system. This step is critical to make the system enter
the BIOS first to enforce a trusted path.

The BIOS can distinguish OS S3 wakeup from OS boot-
ing using some register in the southbridge. In the south
bridge VT8237R [42], the three bits of “Sleep Type” in
the Power Management Control register is set to 001 for
S3 sleep. After the BIOS reads the OS flag and decides to
wake up the trusted OS, it programs the initial boot configu-
ration of the CPU (e.g., the MSR and MTRR registers), ini-
tializes the cache controller, enables the memory controller,
and jumps to the waking vector. Then, the BIOS forwards
the system control to the trusted OS, which OS continues to
perform the ACPI S3 wakeup and recover its CPU context
and device states.

5.2.1 OS Flag Integrity

We must ensure the integrity of the OS flag to prevent
Spoofing Trusted OS attacks. One challenge is to find a safe
place to save the flag. First, we cannot simply save it in the
RAM because the BIOS who needs the OS flag to enable
the memory DIMM(s) cannot read the flag from RAM be-
fore the RAM has been enabled. Second, we cannot save the
OS flag in the CMOS either, since the untrusted OS can ma-

nipulate the OS flag stored in the CMOS as the BIOS does.
However, we can save the Boot flag in the CMOS. Because
the Boot flag records if the untrusted OS has been loaded
into the memory, the adversary can gain nothing aside from
rebooting the untrusted OS by modifying the Boot flag.

Our system uses a physical jumper to control the value
of the OS flag. This jumper can only be physically set by
the local user, while the BIOS and the OS can only read it.
In our system prototype, we use the standard parallel port to
control the OS flag. In the D-Type 25-Pin Parallel Port Con-
nector, the Pin Number 15 is used to signal an Error to the
computer. The Status Port (base address +1) is a read-only
port where Bit 3 reports the Error events. When the user
connects Pin 15 (Error) and Pin 25 (the ground pin) with a
jumper, the bit 3 of the Status port equals 0 and the BIOS
will always wake up the trusted OS. When the user discon-
nects the two pins, the bit 3 of Status port equals to 1 and
the BIOS will always wake up the untrusted OS. Our system
uses parallel port connector due to its simplicity and avail-
ability on the prototype motherboard; many other hardware
bits or devices can serve the same purpose in a computer.

5.2.2 Trusted Path Enforcement

Our system can enforce a trusted path when switching from
the untrusted OS to the trusted OS. Because the BIOS is
the only component that we can trust to enforce the trusted
path, our system must ensure the BIOS is entered in the
OS wakeup stage. Otherwise, an adversary could fake both
the untrusted OS sleep and the trusted OS wakeup that to-
tally bypass the BIOS. Our system uses system power Light
Emitting Diodes (LED) to make sure the untrusted OS has
been suspended. The power LED shows current system
mode: it lights up when the OS is running, and it blinks (or
changes to another color) when the system is in sleep mode.
Since the power LED is hardware-controlled, the user can
trust it to reveal if the untrusted OS has been suspended or



not. Moreover, the system uses the power button to ensure
the system enters the BIOS first. When the user presses the
power button, the system will enter the BIOS first, no mat-
ter whether it boots up from scratch or wakes up from S3
sleep mode. Next, the BIOS is responsible for ensuring the
trusted path to wake up the trusted OS.

The physical jumper indicates which OS is running and it
is read-only, the user can use it to detect the spoofing trusted
OS attacks when the system seems running a trusted OS en-
vironment but the jumper indicates an untrusted OS envi-
ronment.

5.3. Enforcing System Isolation

Our system depends on the BIOS and the ACPI S3 mode
of the trusted OS to enforce resource isolation between the
two OSes. Most modern OSes (e.g., Linux and Windows
XP) support ACPI S3 suspend/wakeup mechanisms, which
is used to enforce the isolation on CPU and I/O devices
(e.g., VGA and NIC). This dramatically lessens our need
to save/recover the CPU context and devices’ states. The
BIOS must be customized to enforce isolation on RAM and
hard disk, which cannot be thoroughly isolated by the OS
alone. In the following, we first introduce the isolation ca-
pability of the ACPI S3 on CPU, NIC, and video devices.
We then present the mechanisms using the BIOS and the
OS to enforce the isolation of RAM and the hard drive.

CPU Isolation: According to ACPI standards [24], the
CPU context will be lost during the S3 sleep, and the un-
trusted OS cannot get any CPU context information of the
trusted OS. The OS is responsible for saving and restoring
the CPU context. The trusted OS always follows the stan-
dard and saves the CPU context. In the untrusted OS, an at-
tacker has only two options: either saving the CPU context
or not saving it. If the attacker modifies the OS to avoid sav-
ing the CPU context, the untrusted OS cannot be resumed
and this becomes a DoS attack.

NIC Isolation: In S3 sleep, most of the devices are put
into D3 (a no-power state for devices) state, during which
the contexts for these devices are lost. Thus, there is no
information leakage during the switching from the trusted
OS to the untrusted OS. According to ACPI specifications,
a network card may provide Wake-on-LAN (WOL) func-
tions to wake up the computer when the card stays in D0
or D3 power state. Our system only supports the network
card in D3 state to wake up the computer, since the device
in D0 state keeps its context that may be misused by the at-
tacker. Fortunately, most of the current network cards sup-
port WOL at the D3 state [25].

Video Device Isolation: In S3 sleep, the content in the
video buffer is lost. The ACPI specification does not require

the BIOS to reprogram the video hardware or to save the
video buffer, so the BIOS does not know how to wake up the
video card from an non-programmed state. One easy way
around this is to execute code from the video option ROM in
the same way as the system BIOS does. vbetool [10] is one
such small application that executes code from the video
option ROM. It can run in the user space but may introduce
some time delay in S3 sleep and wakeup.

Memory Isolation: Memory isolation is physically en-
forced by the BIOS. According to the OS flag, the BIOS
knows which OS is going to be booted or woken up, and
it then initializes or wakes up the corresponding DIMM
for that OS. The other DIMM remains uninitialized or un-
configured (though it may still maintain its data content).
Our system uses DDR2 memory.

DDR2 memory requires the BIOS to set the DQS set-
tings in the memory controller (the north bridge) for mem-
ory read and write. In normal S3 sleep mode, system power
is removed from the the memory controller; however, a
copy of the DQS settings is still maintained in non-volatile
RAM (NVRAM) of the south bridge. During an S3 wakeup,
the BIOS copies the DQS settings from the south bridge to
the memory controller.

Normally, a machine maintains only one set of the DQS
settings. Our Secure Switch system must store two sets of
different DQS settings to initialize/enable different DIMMs
for two OSes. To wake up one OS, the BIOS should re-
set the DQS settings in the memory controller using the
corresponding set of DQS settings. Since the NVRAM of
the south bridge can only save one set of DQS settings,
we must store the other set of DQS settings in some other
non-volatile memory. Our solution is to save the other set
of DQS settings in the CMOS. We save 64 bytes of Data
Strobe Signal(DQS) settings, starting from the offset 56
of CMOS, which by default are not used according to the
CMOS layout of the motherboard (ASUS M2V-MX SE).

The untrusted OS cannot initialize/enable the memory
controller to access the DIMM for the trusted OS. First, the
DQS settings contain more than one hardware register (i.e.,
16 registers on AMD K8 and 4 registers on AMD family 10h
processors), which means there is a transient state wherein
the system cannot access any DIMM before all the DQS
settings are complete. When an attacker exploits a short
program to modify the DQS settings in the memory con-
troller, the program cannot obtain the next instruction from
the main memory and the system will hang. The BIOS can
modify the DQS settings because it reads the instructions
from the non-volatile ROM that is not controlled by the
DQS settings. Second, even if the attacker can pre-fetch
all the instructions and save them in the CPU cache or some
non-volatile memory, it still cannot enable or have access to
the other DIMM for the trusted OS. This is because besides
the DQS settings, the BIOS uses a “DIMM Mask” byte to



control which DIMM should be enabled, and the DIMM
mask is set by the OS flag. When the DIMM mask con-
flicts with the DQS settings, the system will hang. More-
over, it is a very challenging task for the untrusted OS to
(1) load the DIMM initialization and DQS setting instruc-
tions from RAM into the transparent CPU Cache; (2) con-
trol the instruction flow from RAM to Cache and then back
from Cache to RAM; and (3) map the memory space of
the trusted OS into its memory space and then fill the con-
text gaps to read meaningful information from the RAM
belonging to the trusted OS. Third, the untrusted OS can
modify both DQS settings saved in the south bridge and in
the CMOS. However, the conflicts between DQS settings
and the DIMM Mask will hang the system.

Hard Disk Isolation: The non-volatile storage, such as
hard disks used by the trusted OS, should be completely iso-
lated from the untrusted OS to prevent information leakage.
One direct solution is to encrypt a portion or the entirety of
the hard disk before sleeping the trusted OS and to decrypt
it after waking it up. However, the encryption/decryption
operations will increase the switching time, along with the
size of the hard disk.

Most motherboards (e.g., ASUS M2V-MX SE, in our
implementation) have more than one SATA Channels to
support more than one hard disk. When each OS can have
its own hard disk, there are two methods to constrain ac-
cess to the hard disk of the trusted OS. First, some hard
disks support disk lock, an optional security feature defined
by AT Attachment (ATA) specification [1]. This lock al-
lows the user to set a password to lock a hard disk. With-
out knowing the password, an adversary cannot access the
hard disk. The limitation of this method is that not all hard
disks are provided with this feature. Second, according to
the OS flag, the payload of BIOS (e.g., SeaBIOS), which
is responsible for hard disk initialization, can initialize only
one of the two hard disks by setting the SATA Channel en-
able register (e.g., Bus0, Device15, Function0, offset0x40
on southbridge VT8237r). However, if an attacker knows
the southbridge data sheet, the untrusted OS may reset the
SATA Channel enable register and initialize both hard disks.
To prevent the attacker from re-enabling the hard disk, we
use the SMM-based monitoring mechanism to check the
settings of the hard disk configuration. If SMM detects that
the hard disk used by the trusted OS is enabled when the un-
trusted OS is running, it will trigger an alarm to notify the
user. The details of an SMM-based monitoring mechanism
can be found in [44, 13].

With the observation that most browser-based applica-
tions in the trusted OS only require a small amount of data
(e.g., browser cookies) be saved temporarily, our system
uses RAM disk to store the dynamic sensitive data in the
RAM. With Linux kernel version 2.6.18, we set the ker-
nel parameter ramdisk size to initialize 256MB RAM disk.

After booting into the trusted Linux OS, we create a direc-
tory called /ramdisk and mount RAM disk /dev/ram0 to the
directory. However, it is not very user friendly. We im-
prove upon it by using a stackable file system aufs [32, 43]
to mount a read-write layer of RAM disk on top of regu-
lar directories, which are mounted as read-only. We mount
a read-only home directory to /ramdisk/home, so all the
files created under the /home directory will be written into
/ramdisk/home, which is in RAM. Since the RAM is iso-
lated between the trusted and untrusted OSes, the files in
the RAM disk cannot be accessed by the attacker. More-
over, the files in RAM disk are lost after a reboot. We have
considered using Live CD as the trusted OS and tried Live
CDs for Chrome OS, Centos, Linux Mint, Ubuntu, and Fe-
dora; however, none of them provide enough support for
ACPI S3 sleep/wakeup.

5.4. Security Analysis

Our system can ensure a firmware-assisted resource iso-
lation between two OSes to prevent data exfiltration attacks.
The untrusted OS cannot steal data from the trusted OS or
compromise the integrity of the data in the trusted OS. Our
system can also enforce a trusted path during secure switch-
ing to prevent the spoofing trusted OS attacks. We do not
prevent DoS attacks because the user can easily notice this
attack and boot the machine to recover.

Data Exfiltration Attacks. The untrusted OS cannot steal
any data information from the trusted OS using either
shared or separated devices. The two OSes have separated
RAM DIMMs and hard disks. Since the untrusted OS can-
not change memory DQS settings without crashing the sys-
tem, an attacker cannot access the DIMM of the trusted OS.
To protect the dynamic sensitive data in the trusted OS, we
could either save the data in RAM disk or save them in the
hard disk, which is protected by a SMM-based monitoring
mechanism.

The two OSes share all other hardware devices aside
from RAM and the hard disk. The ACPI S3 sleep guar-
antees that the trusted OS won’t leave any sensitive data on
those devices to be accessed by the untrusted OS. First, the
CPU context, including registers and caches, will be flushed
during S3 sleep. In AMD K8, the north bridge is integrated
in CPU and its content is flushed, too. The NVRAM in
south bridge only records some system configuration data.
Second, for hardware devices with their own buffers, such
as VGA and NIC, all of the content in their buffers will be
lost because those devices lose power in S3 sleep.

Spoofing Trusted OS Attacks. Our system can prevent
spoofing trusted OS attacks by enforcing a trusted path dur-
ing OS switching and protecting the integrity of the OS flag.
We use the system power LED to ensure that the untrusted



OS has been suspended, and use the power button to enforce
that the system enters the BIOS first when it is powered on.
We use a physical jumper to protect the integrity of the OS
flag. Note the power LED, the power button, and the physi-
cal jumper are all hardware-controlled, so the untrusted OS
cannot change them.

Network Attacks on Trusted OS. We assume that the
trusted OS is secure and can be trusted when it boots up.
However, since an OS contains tens of thousands of lines of
code, vulnerabilities exist that can be misused by attackers
from the network. Our system can guarantee that the trusted
OS won’t be compromised from the untrusted OS. How-
ever, if normal users use the trusted OS for a long time, we
cannot guarantee that the trusted OS won’t be compromised
from network attacks. The stateless OS mode can only al-
leviate this attack by restoring the trusted OS to a pristine
state every time it is woken, but it cannot prevent this attack.
One promising solution is to employ some TPM- or SMM-
based integrity checking mechanisms [23, 44] to detect any
OS tampering attempts by comparing the newly-generated
OS states with a clean state. This, however, is beyond the
scope of this paper.

Side Channel Attacks. VMM-based solutions (e.g.,
Xen [14]) provide virtual resource isolation and may be
susceptible to side channel attacks [33, 35]. For instance,
co-located VMs on the same machine may have implicit
resource sharing (e.g., Cache) that may be manipuated by
attackers to extract sensitive information such as workload
information [37]. Instead, SecureSwitch provides physical
resource isolation and can prevent Cache-based side chan-
nel attacks by flushing the Cache during OS switching. Se-
cureSwitch cannot protect against side channels that take
advantage of malicious device firmware. The problem of
malicious device firmware is an orthogonal problem and but
is an active research area that SecureSwitch is not trying to
solve. For instance, the Interactive Link system [12] can
help prevent side channels in keyboard, mouse, and moni-
tor.

6. Implementation & Experimental Results

We implement a prototype of the SecureSwitch sys-
tem using an ASUS M2V-MX SE motherboard with VIA
K8M890 as the northbridge and VIA VT8237R as the
southbridge. The CPU is AMD Sempron 64 LE-1300. Two
Kingston HyperX 1GB DDR2 memory modules and two
Seagate Barracuda 7200 RPM 500GB hard disks are in-
stalled. We connect a laptop to the motherboard through
a serial port for debugging and data collection.

We install CentOS 5.5 on one hard disk as the trusted
OS, and Windows XP SP3 on another hard disk as the un-
trusted OS. Our implementation also supports two CentOS

Table 1. OS Switching Time

Switching Operation Secure Switch(s)

Windows XP Suspend 4.41
CentOS Wakeup 1.96

Total 6.37

CentOS Suspend 2.24
Windows XP Wakeup 2.79

Total 5.03

5.5 (or Windows XP) OSes. We use the open-source Core-
boot V4 [2] and SeaBIOS [8] as the BIOS. The total new
lines of code(LOC) we added in the BIOS is 120. It is
significantly smaller than hypervisor- or microkernel-based
methods [41], which rely on an extra software layer in ad-
dition to the BIOS.

6.1. OS Loading and Switching Time

OS loading time is the time duration for loading two
OSes into the memory, and the OS switching time measures
the time duration when the system switches from one OS to
another OS. We use the real-time clock (RTC) to measure
the OS loading time. At the beginning of the BIOS code,
we print out the RTC time to the laptop through the serial
port. This time records the beginning time of OS loading.
We record the ending time when the “rc.local” file is exe-
cuted in CentOS or when a startup application is called in
Windows XP. The total OS loading time is 153 seconds,
74 seconds for loading Centos and 79 seconds for loading
Windows XP. OS loading time only occurs once when the
user boots up the system, and it may be reduced by using
solid-state drive.

OS Switching time consists of two parts: the time to sus-
pend current OS and the time to wake up the other OS. We
use the 64-bit Time Stamp Counter (TSC) to measure the
OS wakeup time for both CentOS and Windows XP. TSC
counts the number of ticks since reset. We write a user-level
program to obtain the current TSC value once it is being ex-
ecuted, and then calculate the wakeup time as TSC*(1/CPU
frequency). However, it is difficult to use TSC to measure
Windows XP’s suspend time. First, we cannot change the
source code of Windows to record the time when the OS
suspend ends. Second, since the BIOS is not involved in the
OS suspend process, it does not know when the OS sus-
pend ends either. Instead, we use an Oscilloscope, Tek-
tronix TDS 220, to measure the suspend time. Before a
customized program initiates the ACPI S3 sleep, it sends an
electrical signal to the Oscilloscope to indicate the start of
S3 sleep. When the OS finishes S3 sleep, the oscilloscope
will receive a power-off electrical signal. We use Oscillo-



scope to measure the suspend times for both CentOS and
Windows XP.

In table 1 we show that the OS switching time from
CentOS to Windows XP is 5.03 seconds, which is a little
faster than switching from Windows XP to CentOS. For
both OSes, the suspend time is longer than the wakeup
time. Windows XP’s suspend and wakeup times are longer
than those of CentOS. Table 1 only provides a rough la-
tency measurement that is constrained to the specific hard-
ware and software used in our prototype system. For in-
stance, when we replace the integrated VGA card (VIA
chip, 256 MB memory) with an external VGA card (S3
chip, 64 MB memory), the OS suspend time is reduced due
to a smaller video memory size. Moreover, when we run
multiple while(1) programs on CentOS, the switching time
is three times longer. This leads us to breakdown the opera-
tions in BIOS, user space, and kernel space to understand
the major contributors for the OS switching delay. Due
to the closed-source nature of Windows XP, we only break
down the operations on the CentOS.

6.1.1 Linux Suspend Breakdown

We use Ftrace [3] to trace the suspend function calls in
Linux S3 sleep. According to the function call graph gener-
ated by Ftrace, the suspend operations can be divided into
two phases: user space suspend and kernel space suspend.
We use the pm-suspend script in CentOS to trigger the OS
suspend. This script first notifies the Network Manager to
shut down networking, and then uses vbetool [10] to call
functions at video option ROM to save VGA states. Next,
it jumps to the kernel space by echoing string “mem” to
/sys/power/state. In the kernel space, the suspend code goes
through the device tree and calls the device suspend func-
tion in each driver. The kernel then powers off these de-
vices. To measure the user space suspend time, we record
the TSC time stamp in file /var/log/pm/suspend.log. For
kernel time measurement, we add printk statements be-
tween various components of the kernel.

Figure 4 shows the time breakdown for user space sus-
pend. Each bar is an average of 10 measurements, and the
Y axis error bars show confidence interval at 95% confi-
dence. The total suspend times for user space is 1517.33
ms. The OS spends time on calling vbetool [10] to save
video states to the /var/run directory, changing the GUI ter-
minal to /dev/tty63 as the foreground virtual terminal, and
stopping the Network Time Protocol Daemon and writing
the current system time to RTC time in CMOS. Other op-
erations include stopping network manager and saving the
states of CPU frequency governors, etc. Figure 5 shows the
time breakdown for kernel space suspend, where the total
suspend times is 1590.14 ms. The most time-consuming
operations are to stop the keyboard, mouse, and hard disks.

Figure 4. User Space Suspend Breakdown
(ms).

Figure 5. Kernel Space Suspend Breakdown
(ms).

It takes a while to reset the PS/2 mouse and keyboard de-
vices in our system. The hard disk delay comes from syn-
chronizing the 16 MB cache on each SATA disk [1]. The
kernel stops other devices (e.g., USB, serial ports) with rel-
atively less time.

6.1.2 Linux Wakeup Breakdown

S3 wakeup operations are provided by both the BIOS and
the OS. The wakeup process starts from a hardware reset.
The system enters the BIOS first, and then jumps to the OS
wakeup vector. The latency time in BIOS is constant and
equals to 1259.25 ms. The OS wakeup operations can be
divided into two parts: kernel space wakeup and user space
wakeup. Figure 7 shows the time breakdown for the ma-
jor components in the kernel space, where the total latency
is 1537.22 ms. The major delay contributors are the USB
and the mouse. Since Coreboot doesn’t provide an opti-
mized support for the USB, the OS must initialize the four
USB ports on the motherboard. Moreover, the mouse ini-
tialization takes more time than the keyboard due to lack
of support in the Coreboot. Figure 6 shows the wakeup
time breakdown in the user space, where the total latency



Figure 6. User Space Wakeup Breakdown (ms).

Figure 7. Kernel Space Wakeup Breakdown (ms).

is 621.04 ms. Initializing the advanced Linux sound archi-
tecture (ALSA) for sound card, changing the foreground’s
virtual terminal, and cleaning up the files take most of the
time.

6.2. Comparison with Other Methods

We compare the SecureSwitch system with other so-
lutions that target at protecting the execution of security-
sensitive code on legacy systems [29, 28, 41, 14]. Ta-
ble 2 presents the comparison results. In SecureSwitch,
the trusted computing base (TCB) is the BIOS code, which
has 248,421 lines of code (LOC) including Coreboot and
its payload SeaBIOS. We only add around 120 new LOC in
the BIOS. The TCB in Lockdown [41] includes not only the
BIOS, but also a light-weight hypervisor with 8,471 LOC.
Both Flicker [28] and TrustVisor [29] don’t rely on BIOS’s
security. TrustVisor has a TCB of 6,351 LOC, and Flicker
has only 250 LOC in its TCB. Xen 4.1 release [14] provides
a hypervisor with 263,173 LOC.

Since the system will always enter the BIOS first after
the system either boots up or wakes up, the BIOS plays an
important role on enforcing the trusted path. SecureSwitch
needs to modify the source code of the BIOS in the system.
For the motherboards and processors that are not supported
by the open source Coreboot [2], we could either work with

BIOS vendors to obtain the BIOS source code or perform
reverse engineering tasks on the BIOS binary code.

Both Xen and TrustVisor use hypercalls and page faults
to swap context, and their switching times are less than 1
millisecond. Flicker has a 1 second switching time due to
its frequent use of the Dynamic Root of Trust Measurement
(DRTM) [23] hardware support for every switching oper-
ation, while TrustVisor is only initialized via DRTM. Se-
cureSwitch can achieve a 6-second switching time by using
the ACPI standard that has been widely supported by hard-
ware manufactures for efficient power management. Lock-
down requires around 40 seconds to switch from one OS
to another one. TPM is required by Lockdown, TrustVi-
sor, and Flicker to provide more secure functions such as
remote attestation and secure storage that are not supported
in SecureSwitch; however, it may not be available on legacy
systems.

In Flicker and TrustVisor, the security code must be
custom-compiled or ported to run in the secure environ-
ment. Although possible, it would seem to be an engineer-
ing challenge to port all existing code to support this, espe-
cially for an entire commercial OS. The legacy applications
and OSes can run directly on SecureSwitch, Lockdown, and
Xen without any changes. The memory overhead in Se-
cureSwitch is high due to the coarse physical isolation on
the DIMMs. The memory overheads in Lockdown, TrustVi-
sor, and Flicker are fairly low; while since Xen can pro-
vide more functions, it needs more memory space. In Se-
cureSwitch, Lockdown, and Flicker, when a security code is
running in the trusted environment, the untrusted OS and the
applications in the untrusted environment are fully stopped.
TrustVisor and Xen support more than one OS concurrent
execution.

We compare the computation overhead among the above
systems as the performance of applications when they are
running in the trusted environments. SecureSwitch and
Flicker have a low computation overhead, since they run
applications on the bare metal. Lockdown, TrustVisor,
and Xen require 5-10% more computation overhead in the
trusted environment due to usage of the Extended/Nested
page tables. TrustVisor and Xen might experience slightly
more slowdown due to the CPU contention among multiple
OSes.

7. Related Work

SecureSwitch was inspired by Lampson’s Red/Green
system separation idea [27]. Instead of trying to solve all
the Red/Green system’s challenges, such as how the users
decide what applications go into each OS and how to give
the user certain control over data exchanges between the
two OSes, we focus on providing a strong resource isola-
tion between the two OSes.



Table 2. Comparing SecureSwitch with Other systems

SecureSwitch Lockdown [41] TrustVisor [29] Flicker [28] Xen [14]

Trusted Computing Base BIOS Hypervisor+BIOS Hypervisor 250 LOC Hypervisor
Switching Time (second) ≈6 40 <0.001 1 <0.001
Hardware Dependency ACPI ACPI+TPM+ TPM+ TPM+ VT-x/SVM*

VT-x/SVM VT-x/SVM VT-x/SVM
Software Compatibility High High Low Low High

Memory Overhead High Low Low Low Medium
OS Concurrency No No Yes No Yes

Computation Overhead Low Medium Medium Low Medium
* Xen requires VT-x/SVM to support full virtualization.

The closest in terms of concept and implementation is
the Lockdown [41] system that uses a hardware switch
and LEDs to provide a trusted path to a small hypervisor,
which ensures virtual resource isolation between two OSes.
Lockdown relies on the light-weight hypervisor to ensure
that trusted applications can only communicate with trusted
sites and thus can prevent malicious sites from corrupting
the applications, while SecureSwitch does not. To switch, it
also uses a ACPI-based mechanism (S4) to hibernate one
OS and then wake up another one. Unfortunately, it re-
quires more than 40 seconds to switch because hibernating
requires writing the whole main memory content to the hard
disk and reading it back later on. In contrast, SecureSwitch
can accommodate two OSes into the memory at the same
time and offers a switching time of approximately 6 sec-
onds.

Flicker [28] and TrustVisor [29] employ a hardware sup-
port called Dynamic Root of Trust Measurement (DRTM)
with a small trusted computing base to create a secure envi-
ronment. Flicker creates an on-demand secure environment
using DRTM, while TrustVisor uses DRTM to securely ini-
tialize a light-weight hypervisor that uses hardware virtual-
ization (VT-x/SVM) to protect the applications running in
the secure environments. The two systems use the TPM to
provide remote attestations and to securely store data when
they are not executing. The major concern about Flicker
and TrustVisor is that the security code must be custom-
compiled or ported to run in the secure environment, and it
is an engineering challenge to port an entire commercial OS
in the secure environment.

There is a line of research that uses hypervisors (VMMs)
to add an extra layer of control between the OSes and the
underlying hardware, including HyperSpace [7], Terra [21],
Safefox [43], Tahoma system [20], Overshadow [17], and
Nettop [30]. Others attempt to protect the integrity of
the hypervisor [39, 18, 13, 44, 45], or to protect the ker-
nel [40, 36, 34]. All of these systems depend upon the in-
tegrity of the shared hypervisor code for the isolation be-
tween two environments. Nevertheless, attacks against the

hypervisors are more and more frequent today [31, 48, 47].
Although the hypervisor may have a smaller attack surface
compared to the traditional OSes, it is still vulnerable to
attack. SecureSwitch employs immutable BIOS-protected
code so that minimal code is shared between the trusted and
the untrusted environments. When comparing with VMM-
based solution, SecureSwitch has some usage limitations.
SecureSwitch can only provide coarse-grained isolation on
memory DIMMs and hard disks, so it is not as scalable
as the VMM-based approaches on accomodating multiple
OSes on the same machine. Moreoever, SecureSwitch does
not support concurrent execution of the two OSes. It also
requires local user attention and hence is not effective when
the user is away from his/her computer.

8. Conclusions

The ever increasing size and complexity of desktop ap-
plications is an undeniable trend. This fact coupled with the
requirement to operate on foreign, untrusted content using
software that is constantly updated has given rise to the need
for disposable and context-dependent, trustworthy environ-
ments. These environments will empower the user to segre-
gate different activities thus lowering the attack surface and
data exposure while maintaining system usability.

To meet this need for usable trustworthy workspaces,
we propose a novel BIOS-assisted mechanism for the se-
cure management of execution environments. A design
tenet of our system was the ability to quickly and securely
switch between operating environments without extensive
code modifications or need for specialized hardware. At the
same time, we wanted to minimize the code attack surface
and prevent mutable, non-BIOS code from being able to
subvert the switching process. Lastly, the system had to of-
fer protection against attacks that aim to deceive the user’s
perception of the operating environment he/she is currently
in. The proposed framework achieves all of these goals and
can operate in conjunction with existing VMM-based iso-



lation systems offering multi-layer isolation approach. In
our prototype implementation, the switching process takes
approximately six seconds. Moreover, the user can clearly
discern the state of the system and seamlessly switch be-
tween untrusted and trusted OSes to perform sensitive trans-
actions. Finally, SecureSwitch is more suitable for environ-
ments where users have both trusted and untrusted work-
loads that do not have to be executed in parallel but rather
frequently alternate.
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