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Abstract. Address Space Layout Randomization (ASLR) is a widely
used technique for the prevention of code reuse attacks. The basic con-
cept of ASLR is to randomize the base address of executable modules at
load time. Changing the load address of modules is also often needed for
resolving conflicts among shared libraries with the same preferred base
address. In Windows, loading a module at an arbitrary address depends
on compiler-generated relocation information, which specifies the abso-
lute code or data addresses in the module that must be adjusted due
to the module’s relocation at a non-preferred base address. Relocation
information, however, is often stripped from production builds of legacy
software, making it more susceptible to code-reuse attacks, as ASLR is
not an option.

In this paper, we introduce a technique to enable ASLR for executables
with stripped relocation information by incrementally adjusting stale ab-
solute addresses at runtime. The technique relies on runtime monitoring
of memory accesses and control flow transfers to the original location of a
relocated module using page table manipulation techniques. Depending
on the instruction and memory access type, the system identifies stale
offsets, reconstructs their relocation information, and adjusts them so
that subsequent accesses to the same locations proceed directly, with-
out any intervention. To improve performance further, the reconstructed
relocation information is preserved across subsequent runs of the same
program. We have implemented a prototype of the proposed technique for
Windows XP, which is transparently applicable to third-party stripped
binaries, and have experimentally evaluated its performance and effec-
tiveness. Our results demonstrate that incremental runtime relocation
patching is practical, incurs modest runtime overhead for initial runs of
protected programs, and has negligible overhead on subsequent runs.

1 Introduction

Keeping systems up-to-date with the latest patches, updates, and operating sys-
tem versions, is a good practice for eliminating the threat of exploits that rely
on previously disclosed vulnerabilities. Major updates or newer versions of oper-
ating systems and applications also typically come with additional or improved
security protection and exploit mitigation technologies, such as the stack buffer
overrun detection (/GS), data execution prevention (DEP), address space layout



randomization (ASLR), and many other protections of Windows [27], which help
in defending against future exploits.

At the same time, however, updates and patches often result in compati-
bility issues, reliability problems, and rising deployment costs. Administrators
are usually reluctant to roll out new patches and updates before conducting ex-
tensive testing and cost-benefit analysis [34], while old, legacy applications may
simply not be compatible with newer OS versions. It is indicative that although
Windows XP SP3 went out of support on April 8th, 2014 [7], many home users,
organizations, and systems still rely on it, including the majority of ATMs [1].
In fact, the UK and Dutch governments we forced to negotiate support for Win-
dows XP past the cutoff date, to allow public-sector organizations to continue
receiving critical security updates for one more year [6].

As a step towards enhancing the security of legacy programs and operating
systems that do not support the most recent exploit mitigation technologies,
application hardening tools such as Microsoft’s EMET (Enhanced Mitigation
Experience Toolkit) [25] can be used to retrofit these and even newer (sometimes
more experimental) protections on third-party legacy applications. An important
such protection is address space layout randomization, which aims to defend
against exploitation techniques based on code reuse, such as return-to-libc [15]
and return-oriented programming (ROP) [36].

ASLR randomizes the load address of executables and DLLs to prevent at-
tackers from using data or code residing at predictable locations. In Windows,
though, this is only possible for binaries that have been compiled with relocation
information. In contrast to Linux shared libraries and PIC executables, which
contain position-independent code and can be easily loaded at arbitrary loca-
tions, Windows portable executable (PE) files contain absolute addresses, e.g.,
immediate instruction operands or initialized data pointers, that are valid only
if an executable has been loaded at its preferred base address. If the actual load
address is different, e.g., because another DLL is already loaded at the preferred
address or due to ASLR, the loader adjusts all fixed addresses appropriately
based on the relocation information included in the binary.

Unfortunately, PE files that do not carry relocation information cannot be
loaded at any address other than their preferred base address, which is speci-
fied at link time. Relocation information is often stripped from release builds,
especially in legacy applications, to save space or hinder reverse engineering.
Furthermore, in 32-bit Windows, it is not mandatory for EXE files to carry
relocation information, as they are loaded first, and thus their preferred base
address is always available in the virtual address space of the newly created
process. For these reasons, tools like EMET unavoidably fail to enforce ASLR
for executables with stripped relocation information. Consequently, applications
with stripped relocation information may remain vulnerable to code reuse at-
tacks, as DEP alone can protect only against code injection attacks. Further-
more, recently proposed protection mechanisms for Windows applications rely
on accurate code disassembly, which depends on the availability of relocation
information, to apply control flow integrity [45] or code randomization [28].



In this work, we present a technique for reconstructing the missing relocation
information from stripped binaries, and enabling safe address space layout ran-
domization for executables which are currently incompatible with forced ASLR.
The technique is based on discovering at runtime any stale absolute addresses
that need to be modified according to the newly chosen load address, and apply-
ing the necessary fixups, replicating in essence the work that the loader would
perform if relocation information were present. As transparency is a key require-
ment for the practical applicability of protections tailored to third-party appli-
cations, the proposed approach relies only on existing operating system facilities
(mainly page table manipulation) to monitor and intercept memory accesses to
locations that need fixup.

We have evaluated the performance and effectiveness of our prototype imple-
mentation using the SPEC benchmark suite, as well as several Windows applica-
tions. Based on our results, incremental runtime relocation patching is practical,
incurs modest runtime overhead for initial runs of protected programs, and has
negligible overhead on subsequent runs, as the reconstructed relocation informa-
tion is preserved. Besides forced ASLR, the proposed technique can also be used
to resolve conflicts between stripped binaries with overlapping load addresses,
a problem that occasionally occurs when running legacy applications, and to
significantly improve code disassembly.

The main contributions of this work are:

— We present a technique for dynamically reconstructing missing relocation in-
formation from stripped binaries. Our technique can be used to enable forced
ASLR or or resolve base address conflicts for third-party non-relocatable bi-
naries.

— We have implemented the proposed approach as a self-contained software
hardening tool for Windows applications, and describe in detail its design
and implementation.

— We have experimentally evaluated the performance and correctness of our
approach using standard benchmarks and popular applications, and demon-
strate its effectiveness.

2 Background

The wide support for non-executable memory page protections [27,30] in recent
operating systems and processors has given rise to code reuse attacks, such as
return-to-libc [15] and return-oriented programming (ROP) [36], which allow
the exploitation of memory corruption vulnerabilities by transferring control to
code that already exists in the address space of the vulnerable process. Return-
oriented programming, in particular, has become the primary exploitation tech-
nique for achieving arbitrary code execution against Windows applications. In
contrast to return-to-libc, the reused code in ROP exploits consists of small
instruction sequences, called gadgets, scattered throughout the executable seg-
ments of the targeted process.



To reuse code that already exists in the address space of a vulnerable pro-
cess, an attacker needs to rely on a priori knowledge of its exact location (al-
though in some cases the location of code can be inferred dynamically dur-
ing exploitation [8, 10, 20, 23, 35, 42, 43]). Address space layout randomization
(ASLR) [11,27,29] protects against code reuse attacks by randomizing the lo-
cation of loaded executable modules, breaking the assumptions of the attacker
about the location of any code of interest. Besides address space randomization,
process diversity [13,16] can also be increased by randomizing the code of ex-
ecutable segments, e.g., by permuting the order of functions [2,11,12,22] and
basic blocks [3,5], or by randomizing the code itself [19,28,44].

In Windows, which is the main focus of this work, ASLR support was in-
troduced in Windows Vista. By default, it is enabled only for core operating
system binaries and programs that have been configured to use it through the
/DYNAMICBASE linker switch. For legacy applications, not compiled with ASLR,
support and other protection features, Microsoft has released the Enhanced Mit-
igation Experience Toolkit (EMET) [25], which can be used to retrofit ASLR
and other exploit mitigation technologies on third-party applications. A core
feature of EMET is Mandatory ASLR, which randomizes the load address of
modules even if they have not been compiled with the /DYNAMICBASE switch,
but do include relocation information. This is particularly important for appli-
cations that even though have opted for ASLR, may include some DLLs that
remain in static locations, which are often enough for mounting code reuse at-
tacks [17,21,47]. EMET’s ASLR implementation also provides higher random-
ization entropy through additional small memory allocations at the beginning of
a module’s base address. Many of the advanced ASLR features of EMET have
been incorporated as native functionality in Windows 8, including forced ASLR.

The above recent developments, however, are not always applicable on legacy
executables. Typically, when creating a PE file, the linker assumes that it will
be loaded to a specific memory location, known as its preferred base address.
To support loading of modules at addresses other than their preferred base ad-
dress, PE files may contain a special .reloc section, which contains a list of
offsets (relative to each PE section) known as “fixups” [38]. The . reloc section
contains a fixup for each absolute addresses at which a delta value needs to be
added to maintain the correctness of the code in case the actual load address is
different [32]. Although DLLs typically contain relocation information, release
builds of legacy applications often strip . reloc sections to save space or hinder
reverse engineering. This can be achieved by providing the /FIXED switch at
link time. Furthermore, in older versions of Visual Studio, the linker by default
omits relocation information for EXEs when performing release builds, as the
main executable is the first module to be loaded into the virtual address space,
and thus its preferred base address is always expected to be available.

As modules (either EXEs or DLLs) with stripped relocation information
cannot be loaded at arbitrary addresses, the OS or tools like EMET cannot
protect them using ASLR. Legacy applications may also occasionally encounter
address conflicts due to different modules that attempt to use the same preferred



base address. Our system aims to enable the randomization of the load address
of modules with stripped relocation information by incrementally adjusting stale
absolute addresses at runtime.

3 Approach

Our approach to the problem of relocating stripped binaries relies on recon-
structing the missing relocation info by discovering such relocatable offsets at
runtime. We note here that a static approach, i.e., using disassembly to find all
the relocatable offsets, would be much more difficult, if not infeasible in many
cases—the reason being that stripped binaries also lack debugging symbols, so
complete disassembly coverage would be impossible in most cases.

3.1 Overview

The basic idea of our approach is to load the stripped binary at a random location
and monitor any data accesses or control transfers to its original location. Any
such access to the original location is either a result of using a relocatable offset
or an attack attempt (the attacker might try to reuse parts of the original code,
not knowing that the binary was relocated). The next step is to identify the
source of the access by checking whether it was indeed caused by a relocatable
offset. In this case, the offset it located, its value is fixed to the new random
base, and the relocation info is reconstructed so as next time the same program
is executed a fixup for that address can be automatically applied.

Although there are a few different ways to monitor memory access and con-
trol transfers at runtime, we followed an approach that minimizes its effects
and dependencies on third-party components. For instance, instruction-level dy-
namic binary instrumentation was not considered for this reason, as it requires
the installation of third-party dynamic binary instrumentation frameworks (and
typically incurs a prohibitively high runtime overhead). Our monitoring facility
is built around basic operating system functionality, mostly memory protection
mechanisms. More precisely, after a binary is loaded to a random location, we
change the permissions of its original location to inaccessible, so as each time
a memory access or control transfer happens to one of the original locations, a
memory violation exception is raised. This type of exception usually contains
the location of the instruction that caused it, the faulting address (can be the
same as the instruction location), and the type of access (read or write).

The main challenge of our approach now becomes to identify whether an
access to the original binary location is caused by a relocatable offset and how
to trace it back to that offset. To better explain this issue, consider the following
example. Assume that an instruction updates the contents of a global variable
using its absolute address (e.g., 0x1000). When the instruction is executed
from the new, randomly chosen location of the binary, an exception will be
raised. At this point, we know the location of the instruction and the faulting
address (0x1000). After analyzing the faulting instruction, we see that one of its



operands is actually the faulting address. In this case, we have to fix the operand
by adjusting it to the new random base, and also reconstruct the relocation info
of this offset.

The example above is the most straightforward case of identifying a relocat-
able offset. In practice, in most cases the relocatable offset is not part of the
faulting instruction. For example, consider the case of dereferencing a global
pointer. There is an instruction to load the value of the pointer, probably in a
register, and another instruction to read the contents of the memory location
stored in the register. In this case, the faulting address is not directly related
with the faulting instruction. Even worse, there are cases in which the relocat-
able offset has been changed before it is used. For example, accessing a field from
a structure in a global array would only require a single relocatable address (the
location of the array) and would result in many runtime accesses within the
range of the array. It is very difficult to trace such an access reliably back to its
source relocatable offset.

However, code-reuse attacks rely solely on the knowledge of the code’s lo-
cation, regardless of the location of data. Based on this observation, and due
to the problematic nature of data pointer tracing, we focus on randomizing the
load address of code segments only. Code pointers are usually guaranteed not
to support any arithmetic—it would be difficult to imagine code that depends
on expressions such as adding a few bytes to the location of a function start,
at least for compiler-generated code. An exception to this is jump tables that
contain relative offsets, but this is a case that can be easily covered, as we will
see later on. This simplifies the overall approach, without sacrificing any of the
security guarantees.

Figure 1 shows a high-level overview of our approach. When a stripped binary
is loaded for execution (left side), its code segment is moved to a random location,
while the original location becomes inaccessible (right side). Then, whenever
there is a memory access or control transfer to the original location (solid arrow),
the faulting address along with the instruction that caused it are analyzed. Based
on this analysis, the source relocatable offset is pinpointed, gets fixed, and its
relocation information is reconstructed. In the following, we describe in more
detail how this analysis is being performed.

3.2 Access Analysis

The series of steps performed after a memory access violation exception is raised
due to a memory access in the original code location is depicted in Figure 2.
Broadly speaking, access violations are grouped into two categories based on
their root cause: (i) reading the contents of the original code segment, and (ii)
control transfers to the original code segment. To distinguish between the two,
the system checks whether the value of the instruction pointer is within the
original code segment.

In practice, the first case corresponds mostly to indirect jump instructions
that read their target from the code segment. These are typically part of jump
tables, which are used for the implementation of switch statements in C. In the
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Fig. 1. High-level overview of runtime relocation fixup. The code segment of a stripped
binary is loaded to a randomly chosen location, and its original memory area is marked
as inaccessible. Memory accesses and control transfers to any of the original locations
are trapped. Relocation information is then reconstructed by analyzing the faulting
instruction.

second case, control is transfered to the original code segment because a code
pointer that has not been relocated is used. This could be a simple function
pointer, part of a C++ virtual table (vtable), or a static one, represented as an
immediate value in an instruction. In the following subsections we describe in
detail how each of these cases is handled.

When control is transferred to locations in the original code segments for
which there is no code pointer, or when we can not verify it as a legitimate code
pointer, these transfers are flagged as code-reuse attempts (see Fig. 2). This
effectively allows attackers to reuse code paths for which there are legitimate
code pointers (e.g., function entries or jump table targets), given that they have
not been reconstructed yet. Arguably, this leaves a very limited set of gadgets
for the attacker, which quickly shrinks further as relocatable code pointers are
identified.

3.3 Jump Tables

A jump table is an array of code targets that is usually accessed through an
indirect jump. The following is an example of such a jump table in x86 assembly
(taken from gcc’s binary):

.text:004D5CCE Jmp ds:off_4D6864 [eax*4] ; switch jump

; DATA XREF: _main+2CE ; jump table for switch statement



Check jump No s EIPin Yes | Search for
table W g Pointer

Check func.
pointer

Yes
p

No

Check vtable
pointer

Global
pointer —>
optimization

Fix registers
and resume

A

Detect
v code-reuse
Addrelocs '\
and resume

Fig. 2. Flow graph of the procedure followed after a memory access exception (trap)
is generated. If the instruction pointer (EIP register) at the time of the exception is
within the original code segment, the system performs pointer verification, otherwise
the faulting instruction is fixed.

.text:004D6864 off_4D6864 dd offset loc_4D5D53
.text:004D6868 dd offset loc_4D5D63
.text:004D686C dd offset loc_4D5D93
.text:004D6870 dd offset loc_4D5D8B

When the jmp instruction is executed from the new random location, an excep-
tion is going to be raised, with the faulting address being (0x4D6864 + eax
* 4). This is handled as follows: i) starting from the location pointed to by
the faulting address, we scan the bytes before and after that location for more
addresses and fix them, and ii) we also fix the relocatable offset in the address
operand of the indirect jump instruction. In case of jump tables with relative
offsets, we just skip the first step.

3.4 Pointer Verification

After jump tables are covered, we only expect to see control flow transfers to
the locations of the original code. In these cases, the location of the faulting
instruction is also the faulting address—there is no information about the source



instruction. Given a faulting address, the whole code segment and initialized data
are scanned for all its occurrences. If there is a single occurrence, we assume
that it is a relocatable offset, which is handled appropriately. Otherwise, for
each occurrence in the code segment, we verify that it is indeed part of a valid
instruction—more precisely, an immediate operand.

Occurrences found in the initialized data segments are a bit more complicate
to cover. Usually, for such a hit to be indeed a relocatable offset, it has to be a
variable holding a function pointer, so there should be a way of accessing that
variable. To verify this, we just need to find a data reference to that variable. In
addition, function pointers can be parts of structures, arrays, or a combination of
both. In general, we verify that an occurrence of the faulting address in the data
segment is a relocatable offset that needs to be fixed if we can find a reference
to or near its location (given as a parameter).

The following example illustrates the function pointer verification process.
Assume there is a global variable that is statically initialized with the address
of a function. Also, there is an indirect call instruction that reads the value of
the global variable and transfers control to its value. At runtime, the value is
going to be read (because the data segment is not relocated) and an exception is
going to be raised when control is transfered to the function. Both the faulting
address and the faulting instruction will correspond the beginning of the target
function. At this point, we find an occurrence in the code segment and verify
that it belongs to an instruction—which is the indirect call in this case.

Another use of function pointers is in C++ virtual tables, which is how dy-
namic class methods are represented. These pointers are handled a bit differently
than simple function pointers, and, for this reason, we have introduced special
checking rules. We first verify that there is a move instruction that copies the
head of the table to a newly created class instance, by finding a move instruction
that references a memory location close to the place where the code pointer was
found. We then also verify that the control was transferred by an indirect call
through a register, by reading the current value at the top of the runtime stack
(return address) and disassembling the instruction right before the location it
points to. Bellow is a real example taken from the eon binary of the SPEC
benchmarks suite:

;; function call

.text:004017F9 mov eax, [ecx] ; ecx 1s this ptr
.text:004017FB mov eax, [eax+24h]

.text:004017FE push edx

.text:004017FF mov edx, [ebptarg_4]
.text:00401802 push edx

.text:00401803 mov edx, [ebptarg_0]

.text:00401806 push edx
.text:00401807 call eax



;; vtable (the static part)
; DATA XREF: sub_409B40+80 ; sub_40BOEO+2Fo

.rdata:00461D24 off_461D24 dd offset sub_40AADO
.rdata:00461D28 dd offset sub_409BRO
.rdata:00461D2C dd offset sub_409BCO

;7 copying the head of the table
.text:0040B10C lea ecx, [esi+4] ; this
.text:0040B10F mov dword ptr [esi], offset off_461D24

The top part of the example shows the code that loads the function pointer from
the vtable to the eax register and then transfers control there by calling it. The
call instruction at the end will actually going to raise an exception. While han-
dling the exception, we check (i) the table that contains the faulting address at
0x461D24 (middle part) is referenced by a move instruction at 0x40B10F (bot-
tom part), and (ii) the instruction before the return address is a call instruction
with a register operand (at 0x401807).

3.5 Dynamic Data

Although in order to reconstruct the missing relocation information we need
to locate relocatable offsets within the image of the executable module, copies
of such values also appear in dynamic data (e.g., in the stack or heap). This
is the result, for example, of a global pointer being copied in a structure field
that was dynamically allocated. In this case, an exception is going to be raised
when the copy of the pointer (in the structure) is used. As described before,
our technique is going to trace the original relocatable offset. This is sufficient
for reconstructing the relocation information for this pointer, and avoid dealing
with the same problem next time the same program is executed. However, we
do not take any further actions to deal with copies in dynamic data. Thus, we
might have to handle more than one exceptions for the same relocatable value
during the same run in which it was first discovered. This, of course, does not
affect the correctness and robustness of the technique in any way, but can affect
overall performance.

To avoid the performance penalty under some cases, while not weakening
our original approach, we added a simple optimization for global pointers. Each
time a relocatable offset is fixed, and it is found to be the source operand of an
instruction that copies it over to a global data location, we check whether the
destination memory location contains the same value and relocate that copy,
too. Below is an example of a few such instructions (taken from gcc’s binary):

.text:004D5A69 mov dword_550968, offset loc_4D1F10
.text:004D5A73 mov dword_550AAC, offset loc_4D1C20
.text:004D5A7D mov dword_5509C4, offset nullsub_1

The first mov instruction in the above example copies the (relocatable) offset
1oc_4D1F10 to the global data memory location 0x550968. At the time an



exception is raised because control was transfered to address 0x4D1F10, the
source operand of the first mov instruction will be fixed, and, if the same value
is found at address 0x550968, that will be fixed as well. In this way, future
copies of the relocatable offset will point to the new code location, and no more
exceptions will be raised for this instance.

In general, when this optimization is not applicable and there are many
copies of relocatable offsets being repeatedly used, we have the option to set an
access threshold, beyond which the system can inform the user that restarting
the program would greatly increase its performance. Still, we believe that this is
a minor issue, as it might occur only in the first few times a program is executed.
After that, the relocation information of the majority of the relocatable offsets
will have been reconstructed.

4 Implementation

We built a prototype of the described technique for the Windows platform. Most
of the development of the tool was done on Windows XP. However, as the APIs
we use have not changed in more recent versions of the operating system, our
prototype supports even the latest version, which is Windows 8.1 at the time of
writing.

The most significant part of the implementation is built on top of the Win-
dows Debugging API [26], with the addition of some other standard functions
(e.g., CreateProcess). This API is designed to work between two processes:
the parent process is responsible for spawning a child process, and then capture
and analyze any debug events the child generates. Debug events include mem-
ory access violation exceptions, process/thread startup/termination, and so on.
Our implementation is bundled as a single application (about 1.5 KLOC) which
can be executed from the command prompt, and receives the path of the target
program to be protected as a command-line argument.

At a higher level, there are two phases of operation: initialization and run-
time. We discuss both in sufficient detail in the rest of this section.

4.1 Initialization

The first step during the initialization phase is to spawn the process, while
passing the appropriate arguments in order to enable debugging. The very first
debug event generated by the child process is a process creation event, which
is handled by the parent by performing the following tasks before resuming the
execution of the child process. Initially, the Portable Executable (PE) headers
are parsed. These headers include information such as the boundaries of each
section (data, code, etc.) and the entry point of the code. Given that information,
we proceed by copying the code section to a new, randomly chosen location using
the ReadProcessMemory and WriteProcessMemory API functions, while
changing the memory protections of the original code segment to inaccessible
using VirtualProtectEx.



In order to improve the performance of certain runtime operations, a hash
table of all possible code pointer values is built. This is done by scanning all
sections and inserting any four-byte values (assuming 32-bit processes) that fall
into the address range of the original code segment. Finally, we check whether
there is a file that contains relocation information that was discovered as part
of previous runs, and apply them.

4.2 Runtime

After initialization is completed and control is given back to the child process,
the parent blocks while waiting for the next debugging event. Usually, we expect
memory access violation exceptions to be generated after this stage. New DLL
loaded events might happen as well, but rarely. Whenever a new DLL is loaded
in the address space of the child process, the system checks whether it contains
relocations. In case it does not, the same initialization steps that were previously
described are performed.

As described in Section 3, the core of our technique is implemented as part of
the handling mechanism of memory access violation exceptions. Each exception
record contains information about the location of the instruction that caused
it, along with the faulting address. Based on this information, we distinguish
between two main cases: i) the instruction pointer falls within the address range
of the original (inaccessible) code segment (instruction address and faulting ad-
dress are the same), and ii) an illegal memory access was made by an instruction
located in the relocated code segment (instruction address and faulting address
are different).

If the instruction pointer after a memory exception is received falls within the
original code segment, this means that the control flow was transfered there and
the program failed when it tried to execute the next instruction. In this case, the
faulting address corresponds to the location of the instruction in the exception
record. The exception is handled by first looking up the faulting address in the
hash table—which is constructed during the initialization phase. A single hit is
the simplest case, because it means that this is the source of the exception. If
there are more than one hits, each one is verified using the rules described in
Section 3 for immediate values or function pointers.

Alternatively, if the faulting instruction belongs to the relocated code seg-
ment, this means that one of its operands caused the fault. This happens under
two circumstances: the instruction is an indirect jump, reading a jump table
target from the original code location, or an instruction that uses a copy of a
relocatable value from dynamic data.

5 Evaluation

In this section we present the results of the experimental evaluation of our pro-
totype in terms of correctness and performance overhead. For the largest part of
our evaluation, we used benchmarks from SPEC CPU2006 [4], as well as some



Possible Jump Verified Single Dynamic Global Reconst.

Program Pointers Tables Pointers Hit Data Opt. Reloc.
perlbench 31,260 118 633 83.0% 43M 41 2,614
bzip2 2,147 4 11 84.6% 25 4 76
gcc 98,955 510 1,008 65.2% 73M 269 7,849
mcf 1,875 1 13 100.0% 19 - 22
gobmk 69,852 21 968 63.5% 4M 54 1,270
hmmer 4,798 15 17 94.4% 42 2 152
sjeng 8,460 12 17 100.0% 18 - 135
h264ref 17,526 17 27 71.0% 320K 61 209
omnetpp 24,861 13 1,509 90.6% 269K 8 1,669
astar 2,690 2 20 100.0% 31 - 42
xalancbmk 141,246 54 4,402 84.2% M 24 5,392

Table 1. Statistics from running the SPEC benchmarks using the reference input data
(largest dataset).

real-world applications, such as Internet Explorer and Adobe Reader. All the
experiments were performed on a computer with the following specifications:
Intel Core i7 2.00GHz CPU, 8GB RAM, 256GB SSD with 64-bit Windows 8.1
Pro.

5.1 Statistics

We started our evaluation with the goal of getting a better feeling on the differ-
ences of applying our technique to programs with distinct characteristics. First,
we selected all the test programs in the integer suite that come with the SPEC
benchmark and stripped the relocation information from the compiled binaries.
Out of the twelve programs in that set, only 1ibguantum had to be left out
because it uses some C99 features that are not supported by Visual C++ (as
noted in the SPEC configuration file Example-windows-ia32-visualstudio.cfg).
Then, we executed each one using our prototype and gathered some valuable
statistics that provide insights about the runtime behaviour of our technique.
At the same time, we checked that the output of the benchmark test runs was
correct, which in turn verified the correctness of our implementation under these
cases.

Table 1 shows the results of this run. The first column contains the name
of each SPEC test program, followed by the number of possible pointers that
we identified for each during the initialization phase. The next three columns
show the number of identified jump tables and the number of verified pointers
along with the percentage of them that had a single hit in the possible pointers
set. Next, we have the number of times that an already fixed relocatable offset
reappeared at runtime because of copies of it in dynamic data, followed by the
number of global pointer copies that we were able to apply the optimization
described in the last part of Section 3. Finally, the number of actual relocatable
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Fig. 3. Normalized slowdown compared to normal execution (no relocation). Dark-
colored bars show the slowdown during the first run, where most of the relocations
are discovered and there are still copies of them in dynamic data. Light-colored bars
show the slowdown during the second run (and any subsequent runs) where most of
the relocations have already been discovered.

offsets that we were able to reconstruct their relocation information in shown in
the last column.

An interesting observation is that most of the times we have a single hit
during the verification of a code pointer, which simplifies the overall procedure.
Another interesting thing to note is that there is a very high variation in the
number of times that a copy of an already fixed relocatable offset in dynamic data
is used. This ranges from a few tens to tens of millions using these test cases. At
the same time, we note that there does not seem to be any significant correlation
of this number and the actual number of the reconstructed relocatable offsets.

5.2 Performance Overhead

Next, we focus on evaluating the performance overhead. As already mentioned,
the only case where we expect our technique to affect the performance of a target
application is during the first (or, few first) times we execute it, where most of
the relocations are being discovered. Any consecutive execution should have a
minimal runtime overhead impact.

Figure 3 shows the normalized slowdown for the first execution of the SPEC
programs under our prototype (Discovery run) and another execution after the
relocations have been discovered (Second run). In both cases, the slowdown is
compared to a normal execution without relocating the program (baseline). Also,
the input data used for this experiment was the reference dataset (i.e., the largest
dataset), where the average completion time for each test program is a couple
of minutes. As expected, we see that the overhead of the second run is mini-
mal (less than 5% on average) and mostly attributed to the unoptimized way
of applying the discovered relocation information. Currently, in our prototype
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Fig. 4. Avoiding the performance hit during the dynamic relocation discovery phase
(first run) by gradually increasing the input size on each execution. The overall time in
this case is much less compared to running a program using large input the first time.

implementation we relocate every offset separately. For each of them, we read its
value, change the memory permissions, update its value and restore the memory
permissions. The unusually high performance overhead that we observed when
executing gcc is due to the fact that it contains a high number of relocatable
offset copies in dynamic data (see Table 1). Although, that overhead does dis-
appear in any consecutive execution, there is not much we can do at this point,
except asking the user to restart the execution of the program in order to take
advantage of the already discovered relocatable offsets. An alternative strategy
is to ask the user to start with a very small input and progressively increase the
workload of the program during the first few executions, until the majority of
the relocations are discovered.

To demonstrate the effectiveness of that strategy, we applied it on the SPEC
CPU2006 benchmarks. These test programs come with three different inputs: a
very small test dataset used for verifying the functionality of the programs, a
medium-sized train set used for feedback-directed optimizations and the refer-
ence dataset, which is much larger that the other two. For all the results up to
this point, we have used the reference dataset. Figure 4 shows the normalized
slowdown of applying our technique to the same SPEC programs, but while in-
creasing the workload (from test, to train and reference) this time. Also, during
each execution, we allow our prototype to use any reconstructed relocation infor-
mation that has been discovered from previous executions. The slowdown of the
reference dataset is much less compared to the one reported in Figure 3. More-
over, the overall discovery phase (which is now broken down to three executions)
is much quicker compared to Figure 3, in absolute numbers. Even though gcc
seems to have a larger slowdown with the test dataset than before, this accounts
for 22 seconds, plus a few minutes for the next two executions, compared to 48
minutes when using the large reference dataset during the first execution.



5.3 Use Cases

The final part of our evaluation focuses on the feasibility of applying our tech-
nique on popular, real-world applications. For this purpose, we installed older
versions of both Internet Explorer and Adobe Reader, where the relocation info
of their EXE files was stripped. The exact versions we used were 6.0.2900.5512
and 8.1.2, respectively. In both cases, the code size of the non-relocatable EXE
was relative small, approximately 10KB. Using our prototype implementation of
our technique we were able to successfully relocate the code segments to a new
and random location, while not breaking the functionality of the applications.
The number of relocatable offsets for which we reconstructed their relocation
information was 18 for Internet Explorer and 3 for Adobe Reader. Although it
is just a small number of relocations, reconstructing this information is crucial
in protecting these applications.

6 Related Work

We divide the related work into two parts. First, we review work that is related
to address space layout randomization. Reconstructing relocation information
enables or improves the accuracy of these proposals. Second, we review work
from the field of dynamic data structure excavation, where similar techniques to
ours are used.

6.1 Code Randomization and Disassembly

As code-reuse attacks require precise knowledge of the structure and location
of the code to be reused, diversifying the execution environment or even the
program code itself is a core concept in preventing code-reuse exploits [13,16].
Address space layout randomization [27,29] is probably one of the most widely
deployed countermeasures against code-reuse attacks. The problem of randomiz-
ing non-relocatable executable files was identified early on, with the first ASLR
implementations for Linux by the PaX project, and an approach based on the
interception of page faults to the original locations was proposed [31]. Our work
is based on the same core idea, but our implementation focuses on Windows
executables, we extend it with patching support to reduce runtime overhead,
and experimentally evaluate it.

In practice, however, the effectiveness of ASLR is hindered by code segments
left in static locations [17,21,47], while, depending on the randomization entropy,
it might be possible to circumvent it using brute-force guessing [37]. Even if all
the code segments of a process are fully randomized, vulnerabilities that allow
the leakage of memory contents can enable the calculation of the base address
of a DLL at runtime [8, 10,20, 23, 35,42,43].

To overcome the limitations of the original design, more fine-grained forms of
randomization [19,28,44] have been proposed. These can be statically applied on
stripped binaries and randomize code at the instruction level (instead of random-
izing the base address only). Their accuracy and correctness, however, heavily



depends on the accuracy of disassembly and control flow graph extraction, which
is improved when relocation information is available.

Control flow integrity [9] is another protection scheme that confines pro-
gram execution within the bounds of a precomputed profile of allowed control
flow paths. Although its original implementation depends on debug symbols for
the complete extraction of the control flow graph, recent proposals have demon-
strated how more relaxed forms of the same technique can be applied on stripped
binaries [45,46]. Again, for legacy applications, these techniques would benefit
from the improved control flow extraction based on the availability of relocations.

Finally, although binary rewriting is still possible in the absence of relocation
information, it relies on dynamic instrumentation for indirect calls/jumps [41].
This makes the overall runtime overhead of the technique to depend on the
number of executed indirect calls/jumps, which are very frequent in C++ appli-
cations.

6.2 Dynamic Data Structure Excavation

Another body of work that uses related techniques to ours is dynamic data
structure excavation [14, 18, 24, 39, 40]. By looking at memory access patters
dynamically at runtime, these techniques are able to infer the type of binary
data, such as data structures and arrays.

Laika [14] employs Bayesian unsupervised learning to detect data structures.
Possible object positions and sizes are identified by using potential pointers in
the process’ memory image. Although sufficient for cases like evaluating the
similarity between malware samples, Laika’s output is not precise enough for
debugging or reverse engineering. Similar to Laika, Rewards [24] reconstructs
type information dynamically, based on abstract structure identification [33]. A
fundamental limitation of this approach is that it is not capable of identifying
data structures that are internal to a module. Howard [40] improves on the pre-
cision of data structure excavation by applying a set of specific rules to identify
data structures dynamically. Arrays, structure fields, etc. are recognized based
on runtime memory access patterns.

7 Conclusion

Address Space Layout Randomization (ASLR) has proven to be a very effec-
tive mitigation against code reuse attacks, making successful exploitation much
harder. Unfortunately, ASLR depends on some information that is often stripped
from executable files.

As a step towards addressing this limitation, we designed and implemented a
technique to dynamically reconstruct this missing information, which effectively
enables ASLR even on programs that are otherwise incompatible. The results
of our experimental evaluation focusing on performance measurements and use
cases with real-world applications clearly show the practicality of the proposed
approach.
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