
From Prey To Hunter∗

Transforming Legacy Embedded Devices Into Exploitation Sensor Grids

Ang Cui
Department of Computer

Science
Columbia University

New York NY, 10027, USA
ang@columbia.edu

Jatin Kataria
Department of Computer

Science
Columbia University

New York NY, 10027, USA
jk3319@columbia.edu

Salvatore J. Stofo
Department of Computer

Science
Columbia University

New York NY, 10027, USA
sal@columbia.edu

ABSTRACT
Our global communication infrastructures are powered by
large numbers of legacy embedded devices. Recent advances
in offensive technologies targeting embedded systems have
shown that the stealthy exploitation of high-value embedded
devices such as router and firewalls is indeed feasible. How-
ever, little to no host-based defensive technology is available
to monitor and protect these devices, leaving large numbers
of critical devices defenseless against exploitation. We de-
vised a method of augmenting legacy embedded devices, like
Cisco routers, with host-based defenses in order to create a
stealthy, embedded sensor-grid capable of monitoring and
capturing real-world attacks against the devices which con-
stitute the bulk of the Internet substrate. Using a software
mechanism which we call the Symbiote, a white-list based
code modification detector is automatically injected in situ
into Cisco IOS, producing a fully functional router firmware
capable of detecting and capturing successful attacks against
itself for analysis. Using the Symbiote-protected router as
the main component, we designed a sensor system which re-
quires no modification to existing hardware, fully preserves
the functionality of the original firmware, and detects unau-
thorized modification of memory within 450 ms. We believe
that it is feasible to use the techniques described in this
paper to inject monitoring and defensive capability into ex-
isting routers to create an early attack warning system to
protect the Internet substrate.

1. INTRODUCTION
The Internet is a dynamically changing network of many

different kinds of devices, predominantly general purpose
hosts and servers connected by a large collection of special-
ized embedded devices. Embedded devices such as routers,

∗Please note that Figures 1 and 2, along with portions of
Section 5 is taken from a companion paper [9], and are
present here so that our exposition has the appropriate back-
ground and completeness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

switches and firewalls constitutes the Internet’s communi-
cation substrate. Devices such as VoIP, IPTV, power man-
agement and physical access control units provide a myriad
of other specialized services. Most host-based security tech-
nologies deployed today are designed primarily to protect
general purpose servers and hosts, leaving vast numbers of
embedded devices, the Internet substrate itself, undefended
against exploitation.

We present a new embedded device defense system de-
signed make the internet substrate a safer environment. We
believe it is technically feasible to inject security functional-
ity in situ into legacy embedded systems to:

1. Provide security features to protect these devices against
exploitation and rootkitting.

2. Create a large scale sensor grid providing new detec-
tion capability to identify attacks against embedded
devices that are currently unmonitored.

Recent studies suggest that large populations of vulnera-
ble embedded devices on the Internet are ripe for exploita-
tion [8]. However, examples of successful exploits against
such devices are rarely observed in the wild, despite the
availability of proof-of-concept malware, known vulnerabili-
ties and high monetization potential. We posit that our in-
ability to monitor embedded devices for malware installation
is a factor in this phenomenon. When deployed through-
out the Internet substrate, the sensor system discussed in
this paper will provide visibility into black-box embedded
devices, allowing us to capture and analyze exploitation of
embedded devices in real-time.

As a first step to show feasibility, we demonstrate a general
method of transforming existing legacy embedded devices
into exploitation detection sensors. We use Cisco firmware
and hardware as the main demonstrative platform in this
paper. However, the techniques described are not specific
to any particular operating system or vendor, and can be
directly applied to many other types of embedded devices.

In order to detect and capture successful attacks against
Cisco routers for analysis, we engineered a system which au-
tomatically injects generic whitelist-based anti-rootkit func-
tionality into standard IOS firmwares. Once injected, the
augmented router firmware can be loaded onto physical Cisco
routers, essentially transforming such devices into highly in-
teractive router honeypots. As Section 8 shows, the result-
ing devices are fully functional, and can be deployed into
production environments.

The main challenge of creating an embedded device hon-
eypot rests with the difficulties of injecting arbitrary detec-
tion code into proprietary, close-source, embedded devices
with complex and undocumented operating systems. In or-
der to overcome this challenge, we’ve created a software con-
structed called the Symbiote [9]. As Section 5 illustrates, the
Symbiote, along with its payload, is injected in situ into an
arbitrary host binary, in this case, Cisco IOS. The injection
is achieved through a generic process which is agnostic to
the operating environment of the host program. Figure 1
shows how a Symbiote is typically injected into a host pro-
gram. In general, Symbiotes can inject arbitrary host-based
defenses into black-box embedded device firmwares. For a
full discussion of Symbiotes, please see [9]

The unique capabilities of the Symbiote construct allows
us to overcome the complexities of injecting generic exploita-
tion detection code into what is essentially an unknown
black-box device. The original functionality of resulting
Symbiote-injected embedded device firmware remains un-
changed. A portion of the router’s computational resources
is diverted to a proof of concept Symbiote payload, which
continuously monitors for unauthorized modifications to any
static areas within the router’s memory address space, a key
side-effect of rootkit installation. As we demonstrate in Sec-
tion 9, the portion of the CPU diverted to the Symbiote’s
payload is a configurable parameter, and directly effects the
performance of the Symbiote payload; in this case, the de-
tection latency of any unauthorized modification.

A monitoring system is constructed around the main com-
ponent of our system, the Symbiote-injected IOS image. The
Symbiote within the IOS firmware simultaneously performs
checksums on all protected regions of the router’s memory
while periodically communicating with an external monitor
via a covert channel. In the event of an unauthorized mem-
ory modification within the router, the Symbiote will raise
an alarm to the external monitor, which then triggers the
capture and analysis component of our system.

As Section 8 discusses, our monitoring system can be de-
ployed in one of three ways; native deployment, emulated
deployment, and shadow deployment. Due to the unique
limitations of each deployment scenario, the capture and
analysis mechanisms differ slightly. For example, when the
Symbiote-injected firmware image is loaded into a physi-
cal Cisco router (native deployment), IOS’s own core dump
mechanism is used to capture the router’s runtime state for
analysis. This is less than ideal because, due to the hard-
ware constraint of the Cisco device, we can not guarantee
that the memory capture is performed atomically. Further-
more, since the core dump is generated by IOS’s own (poten-
tially compromised) code, the integrity of the output can not
be fully trusted. In contrast, when the Symbiote-injected
firmware is executed within Dynamips, a Cisco router em-
ulator, on a general purpose computer (emulated deploy-
ment), the external monitor triggers a response which halts
emulation of the compromised IOS image before initiating
a full memory dump using the general purpose host com-
puter. Thus, emulated deployment of our sensor can guar-
antee that the capture and analysis process can be done
atomically without relying on potentially compromised code.
Section 8 discusses the tradeoffs and advantages of all three
deployments in detail.

Symbiote Manager

Host Program

Symbiote Payload

= intercept point

Figure 1: Logical overview of SEM injected into em-
bedded device firmware. SEM maintains control of
CPU by using large-scale randomized control-flow
interception. SEM payload executes alongside orig-
inal OS.

2. MOTIVATION
Several recent studies demonstrate that there are vast

numbers of unsecured, vulnerable embedded devices on the
internet [8], such devices are vulnerable to the same types
of attacks as general purpose computers [3, 12], and can
be systematically exploited in much the same way [1, 3, 5].
For example, various exploitable vulnerabilities [15, 13] and
rootkits [16] have been found and disclosed for Cisco’s router
operating system, IOS. Cisco devices running IOS consti-
tutes a significant portion of our global communication in-
frastructure, and are deployed within critical areas of our
residential, commercial, financial, government, military and
backbone networks.

Typical of the embedded security landscape, IOS is an
aging system which does not employ standard protection
schemes found within modern operating systems [16], and
does not have any host-based anti-virus to speak of. In fact,
not only is the installation of third-party anti-virus (which
does not yet exist for IOS) not possible via any published OS
interface, any attempt to do so will also violate the vendor’s
EULA and thus void existing support contracts.

Consider the availability of proof-of-concept exploits and
rootkits, the wide gamut of high-value targets which can be
compromised by the exploitation of devices like routers and
firewalls, and the lack of host-based defenses within close-
source embedded device firmwares. Such conditions should
make the vast numbers of vulnerable embedded devices on
the Internet highly attractive targets. Indeed, we have ob-
served successful attempts to create botnets using Linux-
based home routers [4]. As Section 4 shows, the necessary
techniques of exploiting Cisco IOS and installing root-kits on
running Cisco routers are well understood. The works pre-
sented within academic and blackhat circles, combined with
anecdotal evidence of the systematic exploitation of embed-
ded network devices within the last decade suggests that
real-world exploitation of Cisco routers is not only possible,
but likely an undetected reality.

Documented cases of embedded device exploitation are
still relatively rare. High-value embedded targets like en-
terprise networking equipment have seemingly eluded ex-

ploitation. It is possible that the exploitation of devices
like Cisco routers is still beyond the technical capabilities of
the blackhat community. However, it is far more plausible
that stealthy, targeted attacks against high-value embedded
devices have eluded detection due to our inability to gain
visibility into the internals of such devices. It is quite pos-
sible routers have been successfully attacked and are com-
promised without anyone’s knowledge except the UE sellers
who offer them for sale.

Whether or not stealthy exploitation of embedded de-
vices is a reality today, we can confidently anticipate that
attacks against such defenseless, high-value targets is in-
evitable. Therefore, analysis and mitigation of embedded
device exploitation is crucial to the integrity of the Internet
substrate. We believe that accurate, real-time detection of
such attacks is an important first step towards understand-
ing the realities of the embedded security threat. Further-
more, we believe the ability to inject host-based security into
existing legacy devices will be instrumental in mounting a
realistic defense of existing embedded devices.

The Symbiote structure presented in this paper is designed
specifically to abstract away the technical challenges of in-
jecting third-party security into a diverse range of embedded
devices. This device agnostic foundation allows us to look
beyond specific hardware and firmware in order to create a
general body of embedded defense methodologies which can
be feasibly applied to all existing devices.

3. THREAT MODEL
We are interested in detecting, capturing and analyzing

successful injection of rootkits into IOS at runtime. We as-
sume that the attacker is technically sophisticated and has
access to both zero-day vulnerabilities as well as a reliable
rootkit which persistently alters the behavior of the victim
device’s OS, yielding covert root access to the attacker. We
assume that the injected rootkit will patch specific portions
of the router’s code in order to create a hidden backdoor for
the attacker. In other words, we assume that the rootkit will
alter regions of memory within the router that is meant to be
static during normal execution. Static sections within IOS
firmware image typically include the .txt, .rodata, .firmware,
.sdata and large portions of the .data sections. Furthermore,
the boot-loader (rommon) section of the router, as well as all
associated configuration files (startup configuration, running
configuration, etc) can also be monitored for unauthorized
modification.

While our current threat model encompasses all published
IOS rootkitting techniques to date, it is probable that a
covert backdoor can be created within an IOS router with-
out modifying static regions of the router’s memory. The
proposed detection payload will not detect exploits which
leave no persistent change within the victim device. How-
ever, the Symbiote-based injection scheme described in this
paper can be extended to monitor for anomalies within dy-
namic sections of the target device, extending our whitelist-
based detector into a full-blown host-based anomaly detector
(See Section 10).

Furthermore, it is possible for sophisticated attacks to at-
tempt to disable the Symbiote prior to the actual exploita-
tion of the victim device. Since the Symbiote structure de-
scribed in this paper is a software-based defense, absolute
integrity of the Symbiote cannot be guaranteed. In the gen-
eral case, Symbiotes can be fortified with the introduction of

specialized hardware. However, such a solution is not feasi-
ble when considering the realm of legacy embedded devices.
Instead, Section 6 illustrates a general method of increasing
the computational complexity of a successful bypass of the
Symbiote defense without relying on additional hardware.

4. RELATED WORK
Relatively little work has been done to detect and capture

sophisticated attacks against embedded devices. However,
such problems have been well studied for general purpose
computers and operating systems. Numerous rootkit and
malware detection and mitigation mechanisms have been
proposed in the past but largely target general purpose com-
puters. Commercial products from vendors like Symantec,
Mcafee/Intel, Kapersky and Microsoft [2] all advertise some
form of protection against kernel level rootkits. Kernel in-
tegrity validation and security posture assessment capability
has been integrated into several Network Admission Control
(NAC) systems. These commercial products largely depend
on signature-based detection methods and can be subverted
by well known methods [18, 19, 20]. Sophisticated detec-
tion and prevention strategies have been proposed by the
research community. Virtualization-based strategies using
hypervisors, VMM’s and memory shadowing [17] have been
applied to kernel-level rootkit detection. Others have pro-
posed detection strategies using binary analysis [11], func-
tion hook monitoring [23] and hardware-assisted solutions
to kernel integrity validation [22].

The above strategies may perform well within general pur-
pose computers and well known operating systems but have
not been adapted to operate within the unique characteris-
tics and constraints of embedded device firmware. Effective
prevention of binary exploitation of embedded devices re-
quires a rethinking of detection strategies and deployment
vehicles.

Our methodology transforms standard legacy embedded
devices into exploitation detectors. This is similar to exist-
ing honeypot-based IDS strategies, which generally involves
the use of intentionally vulnerable systems to log, capture
and analyze attacks levied against it. Many honeypot-based
systems have been proposed. Few focus on the use or protec-
tion of embedded devices. For example, Ghourabi et al. re-
cently proposed the use of simulated honey routers to study
protocol attacks against BGP [10].

In general, honeypots can be native, emulated or simu-
lated, and can involve a single machine or a vast network of
simulated nodes. Many off-the-shelf honeypot systems exist
for general purpose computers. However, such systems are
not without flaws. For example, simulated honeypots dis-
guises themselves as vulnerable systems but does not expose
any actual vulnerabilities to the attacker. Therefore, min-
imizing false-positives in such systems is a challenge. Fur-
thermore, simulated honeypots may catch indiscriminate ex-
ploitation attempts, but will rarely fool sophisticated attack-
ers in highly targeted attacks. Thus, native and emulated
honeypots which exposes real vulnerabilities to the attacker
are much better suited for detecting sophisticated, targeted
attacks.

Guards, originally proposed by Chang and Atallah [6], is
another technology which uses mechanisms of action similar
to Symbiotes. A Guard is a simple piece of security code
which is injected into the protected software using binary
rewriting techniques similar to our Symbiote system. Once

injected, a guard will perform tamper-resistance function-
ality like self-checksumming and software repair. However,
Guards have no mechanism to pause and resume its com-
putation, the entire Guard routine must complete execution
each time it is invoked. This limits the sophistication of
what each Guard can realistically perform, especially when
Guards are used in time sensitive software and real-time em-
bedded devices.

Devices like Cisco routers are black-box systems utiliz-
ing large numbers of undocumented proprietary hardware
components. The injection of new code into proprietary
firmware and the emulation of specialized and undocumented
hardware makes the creation native and emulated honeypots
for embedded devices challenging. As Section 5 describes,
the unique capabilities of the Symbiote construct allows us
to overcome the above challenges in order to transform stan-
dard Cisco IOS firmware and hardware into highly believable
native router honeypots.

5. MEET SYMBIOTE
For a full discussion of Symbiotic Embedded Machines,

please see [9]. The Symbiote is a software construct that is
injected in situ into a host program to provide the following
four fundamental security properties.

1. The Symbiote has full visibility into the code and ex-
ecution state of its host program, and can either pas-
sively monitor or actively react to the observed events
at runtime.

2. The Symbiote executes along side the host software.
In order for the host to function as before, it’s injected
Symbiote must execute, and vice versa.

3. The Symbiote is an autonomous entity which is hard-
ened to defend against unauthorized modification or
removal once it is injected into the host program.

4. No two instantiations of the same Symbiote are the
same. Each time a Symbiote is created, its code is
randomized and mutated, rendering signature based
detection methods and attacks requiring predictable
memory and code structures within the Symbiote in-
effective.

Host Program

= Live Code = Intercept Point

Host Program

Host Program

= Symbiote Binary

Original Unmodified Host Program Binary

Live Code Found Through Static Analysis or Profiling

Symbiote Binary Injected into Host Program. Live Code is Randomly Intercepted

1

2

3

Figure 2: Symbiote Injection Process.

Figure 1 shows the three logical components of Symbiotes:
Control-Flow Interceptors, Symbiotic Embedded Machine
Manager (SEMM) and the Symbiote Payload. Together,

all three components are injected in situ into the target em-
bedded device firmware. Since the Symbiote is injected in
situ, the size of the resulting firmware image is unchanged.
For example, the current implementation of the Symbiote
Manager, along with the rootkit detection payload requires
only approximately 1600 bytes to be injected into IOS.

Figure 2 illustrates the three step Symbiote injection pro-
cess. First, analysis is performed on the original host pro-
gram in order to determine areas of live code, or code that
will be run with high probability at runtime. Second, in-
tercept points are chosen randomly from the host program.
Lastly, the Symbiote Manager, Symbiote payload and a large
number of control-flow intercepts are injected into the host
program binary, yielding a Symbiote protected host pro-
gram.

The Symbiote randomly intercepts a large number of func-
tions as a means to divert periodically and consistently a
small portion of the device’s CPU cycles to execute its pay-
load. This approach allows the Symbiote to remain agnos-
tic to operating system specifics while executing its payload
alongside the original OS. The Symbiote payload has full ac-
cess to the internals of the original OS but is not constrained
by it. This allows the payload to carry out functionality
which might not be possible under the original OS. In the
case of Cisco IOS for example, a process watchdog timer will
forcibly terminate any process which executes for more than
several seconds. However, since the Symbiote payload exe-
cutes in time-slices randomly distributed throughout many
unrelated processes, the Symbiote payload can execute in-
definitely, circumventing the watchdog timer entirely.

Stealth is a byproduct of the SEM structure. In the case
of IOS, no diagnostic tool available within the OS (short of
a full memory dump) can detect the presence of the SEM
payload because it manipulates no OS specific structure and
is effectively invisible to the OS. The impact of the SEM
payload is further hidden by the fact that CPU utilization of
the payload is not reported within any single process under
IOS and is distributed randomly across a large number of
unrelated processes.

Once the Symbiote Manager gains control of the CPU, it
allocates a certain number of cycles for the execution of its
Symbiote payload (in this case, a checksuming mechanism).
After the payload completes its execution burst, control of
the CPU is returned to the Symbiote Manager, which in
turn resumes the execution of the original host program.

The Symbiote Manager acts as a job scheduler, treating
the entire host program as one process, and its Symbiote
payload as the other. Traditional scheduling strategies can
be used to determine the proper CPU resource distribution
between the Symbiote and its host program. In general, this
involves the optimization of both the frequency of context
switches as well as the duration of the Symbiote payload’s
execution bursts.

The proposed Symbiote payload detects unauthorized code
modification through the computation of checksums over
static regions of memory. Therefore, a delay exists between
the time of the code modification and its detection. In gen-
eral we refer to the time between the occurrence of an unau-
thorized event and its detection as the detection latency.
Intuitively, the amount of CPU resources diverted to the
Symbiote payload should be inversely proportional to the
detection latency, and thus directly proportional to the per-
formance of our detector. In the case of Cisco IOS, and

many other embedded systems, an over allocation of CPU
resources to the Symbiote can adversely affect the perfor-
mance of the protected host device. In practice, we have
found that it is beneficial to frequently interleave the host
program’s execution with short Symbiote payload execution
bursts. This allows the Symbiote payload to compute at ac-
ceptable rates while minimizing the impact on the real-time
nature of Cisco routers.

The Symbiote scheduling problem is arguably simple as
it involves only two ”tasks”. However, performing such a
task safely in an OS agnostic manner on embedded systems
presents several interesting complexities. A full discussion of
potential Symbiote scheduling algorithms is out of the scope
of this paper. However, in the case of our IOS exploitation
detection Symbiote, the performance and overhead charac-
teristics of several scheduling strategies are discussed in Sec-
tion 9.

6. SELF-MONITORING SYMBIOTES
We must consider ways to protect the Symbiote itself

against attack and removal. The polymorphic nature of
the Symbiote and its payload makes signature-based attacks
against it ineffective. To further raise the bar, multiple Sym-
biotes within a protected host program can be configured
in a self-monitoring monitor arrangement. As proposed by
Stolfo, Greenbaum and Sethumadhavan [21], a network of
monitors can be constructed, such that an alarm will be
raised if any subset of monitors are compromised or deacti-
vated, or if any critical condition monitored by the system
is violated. Consider Figure 3, which shows three indepen-
dent Symbiotes arranged in a full-mesh monitoring network.
In this arrangement, each Symbiote monitors a specific crit-
ical condition, i.e., the output of their Symbiote Payload,
while simultaneously monitoring the operational status of
the other two Symbiotes within the network. If one or more
of the Symbiotes are corrupted or disabled, the remaining
Symbiotes within the network will raise an alarm. Similarly,
if all three Symbiotes are simultaneously deactivated, an ex-
ternal sensor can also detect this event and raise an alarm.
Note that the three Symbiotes shown in Figure 3 need not be
located within the same host router. Large networks of em-
bedded device sensors can be collectively protected in this
mutually defensive arrangement. Using Symbiotes in this
fashion is a topic of ongoing research.

7. EXPLOITATION DETECTOR
IOS rootkit and malware code is generally not publicly

available. However, a survey of published persistent rootkit
techniques reveals a commonality in their modus operandi.
Specifically, rootkits such as [16, 13, 7] all modify some re-
gion of static IOS memory in order to inject their rootkit
payload into the victim router. Thus, we implemented a
white-list strategy to detect IOS malcode and rootkits de-
scribed previously.

Known rootkits operate by hooking into and altering key
functions within IOS. To do this, specific binary patches
must be made to executable code. Therefore, a continuous
integrity check on all static areas of Cisco IOS will detect
all function hooking and patching attempts made by rootk-
its and malware. The rootkit detection payload described
below is not specific to IOS, and can be used on other em-
bedded operating systems as well. As Section 9 shows, our

Symbiote payload accurately detects unauthorized modifica-
tion of any monitored region of memory within milliseconds,
and will accurately detect [16, 13, 7] immediately after suc-
cessful exploitation of the victim device.

In the case of Cisco IOS, several large contiguous segments
of the router’s memory address space can be monitored using
the checksumming mechanism described above. Figure 4 il-
lustrates the memory layout of a typical IOS firmware image
on a Cisco router. The darkened regions represent areas of
the router’s firmware which can be safely monitored by our
checksumming mechanism. For example, regions containing
executable code (text and firmware), and static data (ro-
data, ctors, sdata sections) should clearly not be modified at
runtime. In practice, the typical IOS firmware contains large
contiguous sections of memory which should semantically re-
main static during the normal operation of the router.

8. DESIGN AND OPERATION
Our sensor system has three components; a Symbiote-

protected router, a monitoring station, and a capture and
analysis system which automatically collects and analyzes
forensics data once an alarm is triggered. The Symbiote
within the IOS firmware simultaneously performs checksums
on all protected regions of the router’s memory while period-
ically communicating with an external monitor via a covert
channel. In the event of an unauthorized memory modifica-
tion within the router, the Symbiote will raise an alarm to
the monitor, which then triggers the capture and analysis
component of our system.

The proposed exploitation detection sensor can be de-
ployed in one of at least three ways; natively, emulated
within a general purpose computer, or as a shadow replica
for a production device. The implementation of the moni-
toring station and capture and analysis engine changes de-
pending on how the Symbiote-injected router firmware is
executed; natively on embedded hardware or emulated on a
general purpose computer.

When deployed natively, the monitor and capture compo-
nents are integrated into the Symbiote payload and injected
directly into Cisco hardware, producing a standalone sen-
sor. When the detection payload raises an alarm, the Sym-
biote immediately triggers the core dump functionality from
within IOS. This causes the bulk of the router’s execution
state to be captured and transferred via FTP or TFTP.

When deployed as an emulated sensor, using Dynamips
for example, the monitoring and capture components of the
sensor are implemented within the emulator. This reduces
the footprint of the Symbiote and allows us to perform more
sophisticated capture and analysis on the server running the
emulation. For example, Dynamips was modified to contin-
uously monitor a region of the router’s memory for an en-
coded marker, which is set by the Symbiote payload only
when an alarm is raised.

For testing purposes, we chose to modify a portion of the
text that is printed when the ”show version” command is
invoked. In practice, many better covert channels can be
used to communicate between the Symbiote and the router
emulator.

In order to transform large populations of embedded de-
vices into massive embedded exploitation sensor-grids, the
native deployment is the most efficient and practical. For the
purposes of testing and validation of our approach, the emu-
lated deployment scenario is most appropriate. The shadow

Figure 3: Full Mesh Self-Monitoring Symbiote
Network

.text

.rodata

firmware
.eh_frame

.data

.ctors
.sdata
.sbss

.bss

= Static Regions

0x80008000

0x84669060

Figure 4: Memory layout of a typical Cisco IOS
router

deployment is best for capturing and analyzing IOS exploits
in mission critical production environments.

8.1 Native Sensor Deployment
In the native deployment scenarios, the Symbiote-injected

firmware is loaded directly onto the target embedded device,
i.e. a Cisco router. The Symbiote payload executes natively
on the embedded hardware, alongside the original firmware.
Native deployment allows the Symbiote to operate in em-
bedded systems for which emulation is not feasible. For ex-
ample, a large portion of Cisco devices can not be emulated
by existing software due to the use of undocumented, propri-
etary hardware. In practice, most modern high-performance
networking equipment falls within this category. Therefore,
native deployment is most practical for injecting Symbiotic
defenses into the diverse range of embedded devices found
on the Internet substrate.

8.2 Emulated Sensor Deployment

Symbiote Protected
Router (Emulated)

Internal Monitoring
Process

Network

Capture and Analysis
Engine

General Purpose Server

Figure 5: Emulated Deployment of Symbiote-based
Cisco IOS Detector

Figure 5 illustrates a typical emulated deployment of our
sensor. Instead of running the Symbiote-injected firmware

natively on embedded hardware, the firmware is emulated
on a general purpose computer. In the case of Cisco IOS,
Dynamips is used to emulate specific devices such as 7200 se-
ries routers used in our testing and evaluation environment.
This differs from simulated honeypots in a significant way:
the use of actual IOS firmware. The emulation of real Cisco
IOS allows us to create highly interactive honeypots which
exposes real IOS vulnerabilities to potential attackers.

The emulated deployment has several advantages which
make it the ideal approach for developing and testing ex-
perimental prototype Symbiotes. First, debugging proof of
concept Symbiotes in an emulated environment is slightly
more convenient than doing so on native embedded hard-
ware. Second, the general purpose computer which hosts
the emulation usually has far greater computational capacity
than the embedded hardware which it is emulating. There-
fore, computation can be offloaded from the Symbiote pay-
load onto the general purpose host computer. This can
potentially allow the Symbiote payload to perform com-
plex computations not feasible on actual embedded hard-
ware. The Symbiote payload presented in this paper is sim-
ple and requires relatively little CPU power. However, this
can be replaced with payloads more akin to behavior based
anomaly detectors which can require significantly more re-
sources. The development of Symbiote-based anomaly de-
tection mechanisms is an area of active research (See Section
10).

Lastly, the emulated sensor deployment can usually sim-
plify the capture and analysis component of the sensor. In
the case of the sensor presented in this paper, we modi-
fied the Dynamips emulator to atomically capture the entire
memory state of the IOS router once the Symbiote payload
emits an alarm. The Dynamips emulator conveniently al-
lows us to halt the router’s CPU briefly while the memory
capture takes place on the host computer. Once this opera-
tion completes, the memory snapshot, along with all network

traffic received by the router is automatically processed and
archived for analysis. Once the Symbiote payload emits an
alarm, our modified Dynamips emulator continuously dumps
the memory state of the router at a configurable frequency.

8.3 Shadow Sensor Deployment

Symbiote Protected
Router (Emulated Shadow)

Internal Monitoring
Process

Network

Capture and Analysis
Engine

General Purpose Server

Production Router SPAN Port

Figure 6: Shadow Deployment of Symbiote-based
Cisco IOS Detector

In order to detect exploitation against high-performance
embedded devices within production environments, we must
be able to deploy Symbiote-based sensors in a way which will
not cause unintentional service outages on the monitored de-
vices. In such cases, the use of a second, identical embedded
device as a shadow sensor is most appropriate. Figure 6
illustrates a typical shadow sensor deployment.

As the name suggests, incoming network traffic is mir-
rored from the production embedded device to a Symbiote-
injected shadow device, which runs the same firmware as
the production device. The Symbiote sensor injected into
the shadow device continuously monitors the shadow device,
quietly emitting alerts when malicious activity is detected.

The performance of the shadow sensor is critical, as it
must be able to keep up with the production router. Thus,
minimizing the control-plane latency and computational over-
head of the Symbiote is critical to the effectiveness of the
detection system. We discuss preliminary performance data
in the next section. The development of Symbiote-based
shadow sensors is an area of active research.

9. PERFORMANCE AND OVERHEAD
We measure the performance and overhead of our Symbiote-

based exploit detector using two quantitative metrics: com-
putational overhead and detection latency. The Symbiote-
protected router is an emulated Cisco 7200 series router
running IOS 12.3. Two neighbor routers are used to ver-
ify that the Symbiote-protected router’s original functional-
ity is unchanged. One neighbor router is an emulated 7200
series router running standard IOS 12.3. The other neigh-
bor router is a physical Cisco 2921 router running IOS 12.5.
Each router is configured to expose a cross-section of func-
tionality typically seen on production routers. Specifically,
a large number of local loopback interfaces are configured on
each router. OSPF routing is enabled on all three routers,
along with a suite of standard services like IP-SLA, SNMP,
HTTP{S} and SSH.

A stress-test script automatically generates network traffic
throughout the test environment, and periodically accesses

services on all the test routers. All routers are continu-
ously monitored to ensure that all services operate correctly
throughout testing. The workload script also periodically
forces route-table re-calculations by perturbing the various
OSPF routers on the network. In effect, the stress-test script
simulates a typical use profile for the IOS routers in the test
environment. The same stress-test script is run against sev-
eral variants of the Symbiote-injected IOS firmware in order
to illustrate key performance features of our system.

The computational overhead and performance of our sys-
tem is a configurable parameter. As the figures in this sec-
tion shows, the scheduling algorithm used within the Sym-
biote Manager directly impacts the resource consumption of
the Symbiote payload, and thus the overall utilization of the
host device as well as the detection latency. Two scheduling
algorithms are discussed in this section: fixed burst-rate and
inverse-adaptive.

As the name suggests, the fixed burst-rate scheduling al-
gorithm instructs the Symbiote payload to execute for a
fixed burst-rate each time the Symbiote Manager is invoked
through a randomly placed execution intercept. On the
other hand, the inverse-adaptive scheduling algorithm cal-
culates the payload burst-rate based on the elapsed time
since the Symbiote Manager was last invoked; the longer
the elapsed time, the longer the burst-rate.

Intuitively, we can expect the fixed burst-rate scheduling
algorithm to execute the Symbiote payload more frequently
as the host system becomes more utilized. This simple algo-
rithm executes the Symbiote payload more frequently when
the Cisco router is heavily utilized, and less frequently when
the router is idle. In contrast, the inverse-adaptive schedul-
ing algorithm increases Symbiote payload burst-rate when
the system is under-utilized, and throttles back the Sym-
biote payload when the router is under high load.

We analyze the performance of 15 Symbiote-injected IOS
images under the same stress-test; 7 variants using the fixed
burst-rate Symbiote scheduler and 8 variants using the inverse-
adaptive Symbiote scheduler. As the next three subsections
show, the fixed burst-rate Symbiote scheduler aggressively
executes the Symbiote payload, and achieves the least detec-
tion latency (approximately 400 ms). However, this aggres-
sive scheduler tends to amplify CPU utilization of the pro-
tected router, causing very high control-plane latency when
the router is under load. Although the higher fixed burst-
rate values like 0x7FF and 0xFFF detected IOS modification
very quickly, it also caused the router’s control-plane to be
less responsive.

In contrast, the inverse-adaptive Symbiote scheduler pro-
duced slightly longer detection latencies (approximately 450
ms), but was able to significantly reduce the control-plane
latency of the host router, even under high load.

9.1 Computational Overhead
The same stress-test script is run against various ver-

sions of the Symbiote-injected IOS image in order to show
how the Symbiote Manager’s scheduling algorithm affects
the CPU utilization of the router. Two major scheduling
algorithms are measured: fixed burst-rate (Figure 7) and
inverse-adaptive (Figure 8). Burst-rate values presented
in the next two sections represent the number of iterations
of the main Symbiote payload executed each time the Sym-
biote Manager is invoked.

Figure 7 shows the CPU utilization of 7 variants of the

fixed burst-rate Symbiote scheduler, which unconditionally
executes the Symbiote payload for a constant number of
CPU cycles each time the Symbiote is invoked via its many
control-flow intercepts. The units used, burst-rate, is the
number of iterations of the checksum Symbiote payload that
is executed each time the Symbiote Manager is invoked.

This Symbiote scheduler disregards the current CPU uti-
lization of the host device. At higher burst-rate values like
0x7FF and 0xFFF, the router’s CPU utilization tends to re-
main above 95% under heavy load, causing large spikes in
control-plane latency. (See Figure 11)

Figure 8 shows the CPU utilization of 8 variants of the
inverse-adaptive Symbiote scheduler, compared with the base-
line CPU utilization of the unmodified IOS image under the
same stress-test. The inverse-adaptive scheduler is config-
ured with maximum burst-rates from 0x1FFFF to 0xFFFFFF.
Unlike the fixed burst-rate Symbiote scheduler, the inverse-
adaptive scheduler throttles how much the CPU is diverted
to the Symbiote based on current host device utilization.
As a result, Symbiotes with inverse-adaptive schedulers can
achieve comparable detection latencies while significantly re-
ducing its impact on the host router’s control-plane latency.
(Compare Figure 11 and Figure 12).

Figure 7: CPU Utilization: Fixed Burst-Rate SEM
Manager

Figure 8: CPU Utilization: Inverse-Adaptive SEM
Manager

9.2 Detection Performance
In order to measure the detection latency of our exploita-

tion detection Symbiote, a simple vulnerability which al-
lows arbitrary memory modification is artificially introduced
into the Symbiote-injected IOS image. Using an automated
script, this vulnerability is triggered, modifying a random
byte within monitored memory regions. A timer is simul-
taneously started in order to measure the time it takes the
Symbiote payload to detect the event.

Figure 9 shows a roughly linear relationship between the
Symbiote’s fixed burst-rate value and the Symbiote’s detec-
tion latency. As expected, the Symbiote detection latency
decreases as the Symbiote payload’s execution burst-rate
increases. However, as Figure 11 shows, the fixed burst-
rate Symbiote scheduler causes significant increases in the
router’s control-plane latency.

Figure 10 shows the detection latency of Symbiotes using
the inverse-adaptive scheduler. As the figure shows, these
Symbiotes can achieve comparable detection latency values
as the fixed burst-rate versions, but as Figure 12 shows, the
Symbiote’s impact on the router’s control-plane is signifi-
cantly reduced.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
x
F

0
x
3
F

0
x
6
F

0
x
7
F

0
x
9
F

0
x
C

F

0
x
F

F

0
x
3
F

F

0
x
6
F

F

0
x
9
F

F

0
x
C

F
F

0
x
F

F
F

0
x
3
F

F
F

0
x
6
F

F
F

0
x
9
F

F
F

0
x
C

F
F

F

0
x
F

F
F

F

D
et

ec
ti

o
n
 L

at
en

cy
 (

S
ec

o
n
d
s)

Payload Execution Rate

Detection Latency: Fixed Burst−Rate SEM ManagerDetection Latency: Fixed Burst−Rate SEM ManagerDetection Latency: Fixed Burst-Rate SEM Manager

Figure 9: Detection Latency: Fixed Burst-Rate
SEM Manager

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
x
1
F

F
F

F

0
x
3
F

F
F

F

0
x
7
F

F
F

F

0
x
F

F
F

F
F

0
x
1
F

F
F

F
F

0
x
3
F

F
F

F
F

0
x
7
F

F
F

F
F

0
x
F

F
F

F
F

F

0
x
1
F

F
F

F
F

0
x
3
F

F
F

F
F

0
x
7
F

F
F

F
F

0
x
F

F
F

F
F

F

D
et

ec
ti

o
n
 L

at
en

cy
 (

S
ec

o
n
d
s)

Maximum Payload Execution Rate

Detection Latency: Inversely Adaptive SEM ManagerDetection Latency: Inversely Adaptive SEM Manager

Figure 10: Detection Latency: Inverse-Adaptive
SEM Manager

9.3 Control-Plane Latency
Control-plane latency is an indicator of how responsive

the router is. High control-plane latency can cause a router
to drop routing adjacencies and break various time-sensitive
network protocols. Note, however, that this measurement
will not significantly affect the latency of traffic passing
through the router, as most modern routers have hardware-
accelerated forwarding engines which are decoupled from the
control-plane.

Control-plane latency is measured by sending ICMP-echo
messages from the test PC to the router’s local loopback in-
terface. The round-trip-time is collected and shown in Fig-
ure 11 for Symbiotes using fixed burst-rate scheduler vari-
ants, and in Figure 12 for Symbiotes using inverse-adaptive
scheduler variants. Clearly, the inverse-adaptive Symbiote
scheduler significantly reduces the Symbiote’s impact on the
host router’s control-plane latency while achieving compa-
rable detection latency values as fixed burst-rate Symbiotes.

Figure 11: Ping Latency: Fixed Burst-Rate SEM
Manager

Figure 12: Ping Latency: Inverse-Adaptive SEM
Manager

9.4 Discussion
Preliminary performance results shown in this section sug-

gests that high performance exploitation detection is pos-
sible in Cisco IOS. Furthermore, an optimized Symbiote

scheduling algorithm can greatly improve performance of
the overall sensor system by reducing both detection latency
and the Symbiote’s impact on the router’s control-plane la-
tency. Optimization of the detection latency and the in-
duced control-plane latency is an area of active research.

10. FUTURE WORK
The Symbiote-based sensor presented in this paper is a

first step towards demonstrating the feasibility and novel ca-
pability of Symbiotic defense systems. The Symbiote struc-
ture allows complex payloads to be injected into legacy em-
bedded devices, allowing the payload to safely execute along-
side the original firmware without altering the embedded de-
vice’s functionality. The checksumming payload we injected
into Cisco IOS can be replaced with a wide range of de-
fensive payloads. Below are several new Symbiote payloads
currently under development.

10.1 Embedded Self-Healing
The checksumming Symbiote payload discussed in this pa-

per can be extended to reverse unauthorized modification
of memory after it is detected. A self-healing Symbiote pay-
load can be used to identify and restore regions of memory
which have been maliciously modified.

10.2 Embedded Anomaly Detector
Symbiote payloads can implement existing anomaly detec-

tion algorithms. For example, behavior modeling strategies
which monitor resource utilization, control and data flow
patterns can be injected into embedded devices via Sym-
biote payloads.

10.3 Large-Scale Embedded Sensor Grid
The exploitation detection sensor described in this paper

can be injected into large numbers of embedded devices like
Cisco routers in order to monitor and analyze 0-day exploita-
tion of embedded devices. We believe the use of Symbiote-
based exploitation sensors in the wild is a feasible and effec-
tive way of monitoring and analyzing exploits levied against
the internet substrate. A large-scale Symbiote-based sensor
grid can potentially give us real-time visibility into embed-
ded device exploitation on a global scale.

Furthermore, Symbiotes can be used to transform embed-
ded devices into other kinds of sensor grids as well. Sym-
biotes can allow us to use hardware components of embed-
ded devices in novel ways not intended by its original de-
sign. For example, many power-consuming, EM emitting
components can be transformed into covert communication
channels. Existing sensors on embedded devices, combined
with such covert channels can transform a wide gamut of in-
nocuous embedded devices into a web of remotely controlled
mobile sensors.

11. CONCLUSION
The Symbiote mechanism can be used to augment legacy

embedded devices with novel functionality in an OS agnostic
manner. The applications of this capability are numerous,
and will help make the introduction of modern host-based
defenses on existing embedded devices a feasible reality. The
checksumming Symbiote payload described in this paper is
a starting point in demonstrating the unique advantages of
Symbiotic defense systems. We have demonstrated that the

Symbiote can automatically augment Cisco IOS with effec-
tive anti-rootkitting capabilities. This accomplishment has
laid the foundation for the construction of a large sensor-grid
of legacy embedded devices in order to accurately detect and
analyze the exploitation of the devices which make up the
fabrics of our global communication infrastructures.

12. ACKNOWLEDGEMENTS
This material is based on research sponsored by Air Force

Research labs under agreement number FA8750-09-1-0075.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. This material is also
based on research sponsored by DARPA contract: CRASH
program, SPARCHS, FA8750-10-2-0253.

13. REFERENCES
[1] kaiten.c IRC DDOS Bot.

http://packetstormsecurity.nl/irc/kaiten.c.

[2] Microsoft Corporation, Kernel Patch Protection:
Frequently Asked Questions.
http://tinyurl.com/y7pss5y, 2006.

[3] The End of Your Internet: Malware for Home
Routers, 2008. http://tinyurl.com/3d9yv9l.

[4] Network Bluepill. Dronebl.org, 2008.
http://www.dronebl.org/blog/8.

[5] New worm can infect home modem/routers.
APCMAG.com, 2009.
http://apcmag.com/Content.aspx?id=3687.

[6] Hoi Chang and Mikhail J. Atallah. Protecting
software code by guards. In Tomas Sander, editor,
Digital Rights Management Workshop, volume 2320 of
Lecture Notes in Computer Science, pages 160–175.
Springer, 2001.

[7] Ang Cui, Jatin Kataria, and Salvatore J. Stolfo.
Killing the myth of cisco ios diversity: Towards
reliable, large-scale exploitation of cisco ios, 2011. 5th
USENIX Workshop on Offensive Technologies.

[8] Ang Cui and Salvatore J. Stolfo. A quantitative
analysis of the insecurity of embedded network
devices: results of a wide-area scan. In Carrie Gates,
Michael Franz, and John P. McDermott, editors,
ACSAC, pages 97–106. ACM, 2010.

[9] Ang Cui and Savaltore J. Stolfo. Defending legacy
embedded devices with software symbiotes. In Robin
Sommer, Davide Balzarotti, and Gregor Maier,
editors, RAID, volume 6961 of Lecture Notes in
Computer Science. Springer, 2011.

[10] Abdallah Ghourabi, Tarek Abbes, and Adel Bouhoula.
Honeypot router for routing protocols protection. In
Anas Abou El Kalam, Yves Deswarte, and Mahmoud
Mostafa, editors, CRiSIS, pages 127–130. IEEE, 2009.

[11] Christopher Krügel, William K. Robertson, and
Giovanni Vigna. Detecting kernel-level rootkits
through binary analysis. In ACSAC, pages 91–100.
IEEE Computer Society, 2004.

[12] Felix ”FX” Linder. Cisco Vulnerabilities. In In
BlackHat USA, 2003.

[13] Felix ”FX” Linder. Cisco IOS Router Exploitation. In
In BlackHat USA, 2009.

[14] Richard Lippmann, Engin Kirda, and Ari
Trachtenberg, editors. Recent Advances in Intrusion
Detection, 11th International Symposium, RAID 2008,
Cambridge, MA, USA, September 15-17, 2008.
Proceedings, volume 5230 of Lecture Notes in
Computer Science. Springer, 2008.

[15] Michael Lynn. Cisco IOS Shellcode, 2005. In BlackHat
USA.

[16] Sebastian Muniz. Killing the myth of Cisco IOS
rootkits: DIK, 2008. In EUSecWest.

[17] Ryan Riley, Xuxian Jiang, and Dongyan Xu.
Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In Lippmann et al.
[14], pages 1–20.

[18] Dror-John Roecher and Michael Thumann. NAC
Attack. In In BlackHat USA, 2007.

[19] Skywing. Subverting PatchGuard Version 2, 2008.
Uninformed,Volume 6.

[20] Yingbo Song, Pratap V. Prahbu, and Salvatore J.
Stolfo. Smashing the stack with hydra: The many
heads of advanced shellcode polymorphism. In Defcon
17, 2009.

[21] Salvatore J. Stolfo, Issac Greenbaum, and Simha
Sethumadhavan. Self-monitoring monitors. Technical
Report cucs-026-09, Columbia University Computer
Science Department, April 2009.

[22] Vikas R. Vasisht and Hsien-Hsin S. Lee. Shark:
Architectural support for autonomic protection
against stealth by rootkit exploits. In MICRO, pages
106–116. IEEE Computer Society, 2008.

[23] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan
Wang. Countering persistent kernel rootkits through
systematic hook discovery. In Lippmann et al. [14],
pages 21–38.

