
Out Of Control: Overcoming Control-Flow Integrity

Enes Göktaş∗
Vrije Universiteit

Amsterdam, The Netherlands
Email: enes.goktas@vu.nl

Elias Athanasopoulos†
FORTH-ICS

Heraklion, Crete, Greece
Email: elathan@ics.forth.gr

Herbert Bos
Vrije Universiteit

Amsterdam, The Netherlands
Email: herbertb@cs.vu.nl

Georgios Portokalidis
Stevens Institute of Technology

Hoboken, NJ, USA
Email: gportoka@stevens.edu

Abstract—As existing defenses like ASLR, DEP, and stack
cookies are not sufficient to stop determined attackers from
exploiting our software, interest in Control Flow Integrity (CFI)
is growing. In its ideal form, CFI prevents flows of control that
were not intended by the original program, effectively putting
a stop to exploitation based on return oriented programming
(and many other attacks besides). Two main problems have
prevented CFI from being deployed in practice. First, many CFI
implementations require source code or debug information that
is typically not available for commercial software. Second, in
its ideal form, the technique is very expensive. It is for this
reason that current research efforts focus on making CFI fast
and practical. Specifically, much of the work on practical CFI is
applicable to binaries, and improves performance by enforcing a
looser notion of control flow integrity. In this paper, we examine
the security implications of such looser notions of CFI: are they
still able to prevent code reuse attacks, and if not, how hard is it
to bypass its protection? Specifically, we show that with two new
types of gadgets, return oriented programming is still possible.
We assess the availability of our gadget sets, and demonstrate
the practicality of these results with a practical exploit against
Internet Explorer that bypasses modern CFI implementations.

Keywords—Control-flow integrity evaluation, code-reuse attack

I. INTRODUCTION

Since the broader adoption of a variety of protection
mechanisms, exploiting software vulnerabilities has become
more challenging [1]. In particular, the introduction of hard-
ware support for non-executable data regions and its ensuing
support from operating systems (e.g., data execution prevention
or DEP [2]), the incorporation of stack smashing protection
(SSP) [3] in compilers, and the use of address-space layout
randomization (ASLR) [4] by applications have significantly
raised the bar for exploit writers. However, the sophistica-
tion level of attackers has also risen. Information leakage
and guessing attacks [5], [6] enable attackers to construct
exploits [1], [7], [8] that bypass ASLR and SSP, and are now
commonly part of the exploit. Even the smallest initial leak
of a code pointer can help expose significant portions of the
program in memory [5], while code reuse attacks employing
return-oriented programming (ROP) [9], [10], jump-oriented
programming (JOP) [11], [12], and return-to-libc [13] are used
to overcome DEP.

None of the attacks mentioned above would be possible, if
we can prevent an exploit from hijacking the control flow of a
program. Enforcing control-flow integrity (CFI), as proposed
by Abadi et al. [14], guards against flows of control not
intended by the original program. Restricting program flow
in this manner prevents all such attacks. Additionally, CFI is
not vulnerable to information leakage, but it assumes that DEP

is in place. Since its inception in 2005, there have been tens
of follow-up publications [15], [16], [17], [18], while it has
been particularly successful on other domains like software-
fault isolation [19], [20].

Two main problems have prevented CFI from being de-
ployed in practice. First, many CFI implementations require
source code or debug information that is typically not available
for commercial software. Second, the technique is expensive
with overheads that may be as high as 25% [20] to 50% [14].
It is for this reason that much of the recent research focuses
on making it fast and practical. Specifically, recent work on
practical CFI is applicable on binaries, but it enforces a looser
notion of control flow integrity [17], [16].

It is crucial to question what the implications of such looser
notions of CFI are for the security of the system. Can they still
prevent code-reuse attacks, like return-to-libc and ROP? If not,
how hard are they to bypass? Because of the importance of CFI
and its potential benefits, it is imperative that we can answer
these questions.

This work provides an answer to the above questions by
evaluating the effectiveness of state-of-the-art CFI solutions.
We examine three versions of CFI: the original implementation
described by Abadi et al. [14], and recent works by Chao
Zhang et al. [16] (CCFIR) and Mingwei Zhang et al. [17] (bin-
CFI). We identify the control-flow restrictions they impose,
and compose a conservative model of the most restrictive
framework, which is CCFIR. We then proceed to develop a
methodology for constructing code-reuse attacks under this
most-restrictive model. Our approach follows the steps of an
attacker, who would target a CFI-protected system. First, we
identify permissible control-flow transfers. We then proceed
to identify and collect various types of code-segments, or
gadgets in ROP terminology, that can be invoked given the
allowable control-flow transfers. After, we link these segments,
frequently in a similar fashion to conventional code-reuse
attacks. Finally, we use a chain of our CFI-resistant gadgets
to inject and execute shellcode.

We demonstrate the feasibility and effectiveness of our
methodology by constructing a proof-of-concept exploit, based
on a real-world exploit [21] against Internet Explorer 8 on
Windows 7 with DEP and ASLR in use.1 Briefly, the exploit
is based on a heap overflow that serves a dual purpose, so
unlike other attacks, we only use a single vulnerability for
the whole attack. First, it serves as a memory disclosure bug,
which we use to locate the addresses of loaded components

1The exploit used was a winner in the 2012 Pwn2Own competition
http://pwn2own.zerodayinitiative.com/.

http://pwn2own.zerodayinitiative.com/

and of the gadgets we need to perform the attack. Second,
it grants us control over a jump instruction. We redirect the
controlled jump to a chain of gadgets linked through call
instructions to corrupt the stack and, eventually, control a
return instruction. We proceed to perform stack-pivoting [10]
to be able to perform ROP using the gadgets available to
us. Next, we use a chain of gadgets, linked through return
instructions, to make a code segment writable and overwrite
it with our shellcode. The final step executes one last, CFI-
checked, but permissible, return instruction into our shellcode.

Contributions: In this paper, we:

• evaluate fast, state-of-the-art CFI techniques and show
that they do not protect against advanced ROP ex-
ploits;

• develop a methodology for performing code-reuse
attacks against CFI-protected software;

• we demonstrate the chaining of gadgets using func-
tion calls to perform useful actions, i.e., call-oriented
programming (COP);

• construct a working exploit for Internet Explorer 8 on
Windows 7 with DEP and ASLR on, and assuming
CCFIR is in place;

• assess the availability of gadgets required to launch
such attacks against other popular software on Win-
dows 7, such as Internet Explorer 9, Acrobat Reader
XI, the Microsoft Office 2013 suite of programs, and
Firefox 24.

Although we show that current CFI proposals are still
vulnerable to ROP exploits, we do not dispute that they (again)
raise the bar for attackers. Instead, we propose that CFI is
augmented with a run-time mechanism for enforcing integrity.
In their original CFI work [14], Abadi et al. had already
suggested the use of a run-time mechanism for checking that
functions return to their caller [22]. Even though this approach
also suffers from applicability problems, due to the counter-
intuitive asymmetry between call and return instructions in
binaries, we want to reassert the need for run-time defenses
to complement CFI toward comprehensive protection from
control hijacking and code-reuse attacks. It is our hope that
this work will encourage additional research in the direction
of CFI to further improve the provided security guarantees and
performance.

The rest of this paper is organized as follows. Section II
provides some background information on CFI. It compares an
ideal version of it with recent more practical instantiations, and
presents their limitations. Section III presents our methodology
for performing code-reuse attacks under CFI. Based on the
steps presented in Sec. III, we describe how we built a working
attack against Internet Explorer in Sec. IV. In Sec. V, we
analyze different applications on Windows 7 and show that our
attack is generic and applicable on many other applications,
as its components are found in abundance in many different
libraries and programs. Section VI discusses other defenses
that may be vulnerable to our attack and identifies future
directions for defending against it, and code-reuse attacks in
general. Related work, even though discussed throughout the
paper, is in Sec. VII. We conclude the paper in Sec. VIII.

II. CONTROL-FLOW INTEGRITY

In this section we present background information on
control-flow integrity (CFI). We begin by presenting an ideal
version of it, we expand on how it is practically implemented,
and we conclude by summarizing the weaknesses of its differ-
ent instantiations.

A. Ideal CFI

The vast majority of control-flow hijacking attacks operate
by exploiting a memory corruption bug, such as a buffer
overflow, to control an indirect control-flow transfer instruction
in the vulnerable program, most commonly function pointers
and return addresses. Control hijacking attacks lead to code-
reuse (e.g., return-to-libc [13], ROP [9], and JOP [11], [12])
and code-injection attacks.

CFI thwarts control-hijacking attacks by ensuring that the
control flow remains within the control-flow graph (CFG)
intended by the programmer. Every instruction that is the
target of a legitimate control-flow transfer is assigned a unique
identifier (ID), and checks are inserted before control-flow
instructions to ensure that only valid targets are allowed. All
programs usually contain two types of control-flow transfers:
direct and indirect. Direct transfers have a fixed target and
they do not require any enforcement checks. However, indirect
transfers, like function calls and returns, and indirect jumps,
take a dynamic target address as argument. As the target ad-
dress could be controlled by an attacker due to a vulnerability,
CFI checks to ensure that its ID matches the list of known and
allowable target IDs of the instruction. An example is shown
in Fig. 1. Note that this CFI is even stricter than the original
proposal [14].

CFI, along with W⊕X protection such as Data Execution
Prevention (DEP) [2], and ASLR provides strong guarantees
regarding the integrity of the protected programs. However,
there are two major challenges for the adoption of CFI in its
ideal form. First, it requires a complete and precise CFG of the
protected application in order to accurately identify all indirect
transfer targets and assign IDs. A poor identification of IDs
would result in breaking applications. Second, it incurs a non-
negligible performance overhead, caused by the introduced
checks before indirect control-flow instructions. The larger the
number of possible legitimate targets an instruction has, the
higher the number of the checks required and the overhead.

B. Practical CFI

We can improve CFI’s performance by reducing the num-
ber of IDs (also referred to as labels) used in a program. Such
a reduction also simplifies the ID checks required before an
indirect transfer. For instance, in Fig. 1, we can replace labels
ID41 and ID51 by a shared label ID40, so that we need to
check only for the new label before call *(fptr) in function
sort. Note that if we are just examining the code snippets in
Fig. 1, collapsing the two IDs into one does not compromise
the CFG being enforced by CFI. Similarly, we can replace IDs
ID11 and ID21 with a new label ID10 that will be checked
before sort returns.

Perhaps the biggest challenge in applying the ideal form of
CFI is obtaining the complete CFG for a program, particularly

bool less_than(int x, int y); bool greater_than(int x, int y);

bool sort(int a[], int len, comp_func_t fptr)

{

 ...

 if (fptr(a[i], a[i+i]))

 ...

 ...

}

void sort_1(int a[], int len)

{

 ...

 sort(a, len, less_than);

 ...

}

void sort_2(int a[], int len)

{

 ...

 sort(a, len, greater_than);

 ...

}

sort:

greater_than:

less_than:sort_1:

call sort
ID11:

sort_2:

call sort
ID21:

call *(fptr)

ID41:

ID51:

retret

ret

ID31:ID11:

check ID31

check ID31

check ID41|ID51

ret
check ID11|ID21

Fig. 1: An example program and its CFG. Conceptually, CFI introduces labels and checks for all indirect transfers. Control-flow
transfers checked by CFI are shown in solid lines.

when source code or debugging symbols are not available. Like
pointer analysis [23], perfect CFG generation is an intractable
problem in many setups. For example, if a function other than
less_than and greater_than is passed to sort, and we fail to
determine this control flow during the analysis of the program,
then the check before call *(fptr) will fail, terminating the
application.

To tackle the problem of incomplete CFGs, the original CFI
proposal, as well as more recent work like CCFIR and bin-CFI,
adopts more relaxed rules when enforcing control flow. The
approach they take is to coalesce multiple control-flow-target
IDs into a single one—essentially permitting more control-flow
transfers than in the ideal case. Considering the challenges of
obtaining a precise CFG for most applications, Abadi et al. [14]
suggest an implementation of CFI using only one or two IDs
for all transfer targets. As a result, when using a single ID,
indirect transfers through function calls, returns, and indirect
jumps are allowed to: (a) functions whose addresses are
used in the program (function addresses), and (b) instructions
following functions calls (i.e., return addresses). When using
two IDs, indirect calls are allowed to (a) and returns to (b).

Recent CFI designs have also made significant progress in
applying CFI to binary-only software (CCFIR [16]) and even
commercial-off-the-shelf (COTS) software without the need
for any debugging or relocation information (bin-CFI [17]).
Both of these approaches have proposed improved disassem-
bly techniques to extract the control-flow targets of indirect
control-flow instructions in binaries and apply CFI with low
performance overhead. In addition, they both use a small
number of IDs to restrict the control flow. Bin-CFI uses two
IDs: one for function returns and jumps, and another one for
function calls. CCFIR supports three IDs, one for function
calls and indirect jumps, one for return addresses in “normal”
functions, and a specialized one for return addresses in a set of
security-sensitive functions. Table I summarizes the restrictions
enforced by the CFI approaches we have discussed. Among the
three, bin-CFI requires the least information about the binary
being protected, and CCFIR has the strictest rules. We discuss
more CFI approaches in Sec. VII.

TABLE I: Allowable transfers in different CFI approaches.

CFI CCFIR bin-CFI
(1 ID) (3 IDs) (2 IDs)

Return addresses

All
indirect
transfers

All ret instructions
ret & indirect
jmp instructionsReturn addresses in ret instructions in

sensitive functions sensitive functions

Exported functions indirect call & jmp indirect call
instructionsinstructions

Sensitive functions X

sort:

greater_than:

less_than:sort_1:

call sort
ID2:

sort_2:

call sort
ID2:

call *(fptr)

ID1:

ID1:

retret

ret

ID2:ID

check ID2

check ID2

check ID1

ret
check ID2

Allowable transfers

Fig. 2: Loose CFI allows a broader set of control-flow transfers,
even though they are not present in the CFG.

C. Weaknesses

CFI restricts control-flow transfers based on a finite, static
CFG. As a result, even in its ideal form it cannot guarantee that
a function call returns to the call site responsible for the most
recent invocation to the function. For example, in Fig. 1 the
CFI check before the ret in function sort cannot enforce that
the function is returning to its caller, but only that it returns to
one of its legitimate callers in the CFG. In this case, functions
sort_1 and sort_2.

Limiting the number of IDs used and applying CFI more
loosely to improve performance and accommodate imperfect
CFGs, further reduces its precision. Figure 2 shows the CFG
from Fig. 1, along with the corresponding CFI checks using
only two IDs, much like bin-CFI and CCFIR. The new dashed
arrows show control-flow transfers that are not part of the CFG
but are still permissible because all return addresses share the

some_function:

pop

pop

mov | add | or | ...

mov | add | or | ...

Return-oriented gadget

Jump-oriented gadget

ret

jmp *(ptr)

(a) Traditional gadgets.

some_function:

EP - Entry-point gadget

CS - Call-site gadget

call | jmp *(ptr)

ret
L

a
rg

er
 E

P
 g

a
d

g
et

(b) Gadgets under CFI.

Fig. 3: Type of gadgets used in code-reuse attacks.

same CFI ID. Over-permissible transfers are also possible with
indirect call and jump instructions. For example, any indirect
call could transfer control to less_than or greater_than.

Undoubtedly, even loose forms of CFI harden binaries
against attacks. Normally, control-hijacking exploits are able
to redirect execution to any instruction in the binary. On x86
architectures, which use variable-length instructions and have
no alignment requirements, an attacker can redirect control to
virtually any executable byte of the program. If we consider
every executable byte as a potential control-flow target, then
CFI blocks more than 98% of these targets [17]. But, is the
remainder 2% enough for attackers exploiting a program?

It is imperative to question whether loose versions of
CFI actually provide sufficient protection against sophisticated
exploits [1] developed in recent years. The current state-of-
the-art attacks employ ROP to bypass W⊕X protections and
memory leaks to bypass ASLR. Attackers carefully develop
exploits for a particular application and system configuration
to maximize their success rate. The research question in our
work is: can non-ideal versions of CFI withstand such attacks?

III. CODE-REUSE ATTACKS UNDER CFI

This section presents a methodology for performing code-
reuse attacks even when CFI defenses are in place. We model
the strictest rules enforced by the CFI mechanisms listed in
Tab. I, which are the ones of CCFIR, and show how they
can by bypassed. We then proceed to use this methodology to
create a working exploit against Internet Explorer 8 in Sec. IV.

A. Traditional Code-reuse Attacks

ROP exploitation is based on an attacker controlling the
stack of a program. After corrupting the stack and controlling
the return address of an executing function, when the func-
tion returns, control is diverted to a gadget specified by the
attacker’s payload. Since gadgets are small sequences of code
that end with a ret, similar to the return-oriented gadget
shown in Fig.3a, the attacker can carefully position data on
the stack to make the program jump from gadget to gadget,
chaining together the final code. Between gadget addresses,

TABLE II: We name gadgets based on their type (prefix),
payload (body), and exit instruction (suffix). In total, we name
2×3×3=18 different gadget types.

Gadget type Payload instructions Exit instruction
Prefix Body Suffix

CS - Call site
EP - Entry point

IC - Indirect call
F - Fixed function call
none - Other instructions

R - Return
IC - Indirect call
IJ - Indirect jump

he can place data to be used in a computation, or arguments
for calling a function. Gadgets are usually very simple. For
instance, they may pop elements off the stack, perform a
small computation like an addition, and then execute ret.
Such small chunks of functionality form a virtual instruction
set for the ROP program that can be chained together to
form a program of arbitrary complexity. ROP is an extremely
powerful technique that researchers have shown to be Turing
complete [9]. Extensions of this technique use gadgets that
end with indirect jump or call instructions (e.g., like the jump-
oriented gadget in Fig. 3a) [11], [12], [24].

Creating a working ROP exploit is typically a complex,
multi-step process. It typically starts with a memory disclosure
that allows the attacker to obtain code pointers. Next, the attack
may require a variety of further preparations, such as advanced
heap Feng Shui [25] to pave the way for a dangling pointer
exploit, stack pivoting, and/or buffer overflows. In addition, the
attacker needs to identify useful gadgets and construct a ROP
program out of them by setting up the appropriate addresses
and arguments on the (possibly new) stack. Finally, a control
flow diversion should start off the ROP chain.

The fact that ROP attacks have become so popular despite
their complexity demonstrates that attackers will go to great
lengths to exploit a system. In addition, they will develop com-
pilers, gadget harvesters, and other tools to make exploitation
easier [26], [27], [28]. In other words, it is important that
we probe the protection offered by looser forms of CFI very
carefully. If we do not, attackers will.

B. Gadgets in CFI

We identify two new types of gadgets that are available to
attackers under CFI, shown in Fig. 3b. Call-site (CS) gadgets
are blocks of instructions right after a call instruction that
terminate with a return instruction. Entry-point (EP) gadgets
are blocks of instructions starting at a function’s entry point
and ending with an indirect call or jump. Note that there are
other types of accessible gadgets, like blocks of instructions
beginning after call instructions and ending with an indirect
call or jump, but for simplicity we will only focus on the first
two types initially.

These new types of gadgets have different properties from
traditional gadgets. For instance, they need to begin at an
allowable control-transfer pointer. Intuitively, this means that
they are going to be larger, both in terms of bytes and
instructions. In Sec. V, we collect and measure their length. As
the length of the gadgets increases, we need to be more careful
when trying to link them together. Primarily, because they
will most probably contain instructions unrelated to the ones
performing the desired functionality. For instance, suppose we
want to load a value from the stack into a register. We still

need to collect the gadgets that have such an effect, but we
must also exclude the ones that include instructions that tamper
with our data on the stack, or that overwrite the contents of
other registers we care about, and so on.

Another consideration is that larger gadgets may include
code branches within them. Branches within gadgets can be
actually considered both a bane and a blessing. If we cannot
control the branching condition, or at least deterministically
know its outcome, it provides an additional side effect that
needs to be considered before using it. However, if the branch
can be controlled, it reveals new possibilities. First, it means
that the functional length of the gadget could be smaller, since
a part of its instructions can be ignored, revealing a smaller,
potentially more valuable gadget. In other cases, it means that a
single gadget can be manipulated to perform different actions
by controlling which path it is actually taking.

Generally, we prioritize gadgets based on their size, exam-
ining smaller ones first, as controlling branching conditions is
more complex. Table II provides a guide on how we name the
gadgets available to us under CFI. We elaborate on their use
in the remainder of this section.

C. Locating the Gadgets

Usually the chain of gadgets used in an attack is built
offline by manually searching for them or using assisting tools
on the vulnerable application and its libraries. The process
is straightforward when the layout of the target program
in memory is the same on each run. However, ASLR is
now becoming more broadly adopted, so predetermining the
location of any component in the targeted program is no longer
possible.

Attackers have begun using two-stage attacks [29], where
they first attempt to learn some information regarding the
layout of the target application, and then use that information
to fix the location of their gadgets in the payload. This can
also become part of a compound exploit that patches itself
with the discovered locations [21]. As mentioned earlier, the
first stage is usually facilitated by the existence of a memory
disclosure bug in the vulnerable application. In their simplest
version, such bugs disclose the address of one or more modules
loaded in the address space of the victim process, containing
gadgets that can be used by the attacker. Bugs of different
severity can disclose different amounts of information and of
different importance. For example, Snow et al. [5] have shown
that even advanced memory inspection is possible, enabling the
compilation of an exploit at run time.

Alternatively, previous work has shown that it is also
possible to brute-force attack a randomized executable [30],
while we have also seen attacks exploiting the fact that one of
the modules does not support ASLR [31] (security is only as
strong as the weakest link).

The ideal CFI does not require nor is affected by ASLR.
However, because in practical versions of CFI the rules are
relaxed, ASLR becomes a key component. CCFIR even takes
an extra step and proposes an additional level of random-
ization [16]. For each module, indirect control-flow transfers
are redirected through a special springboard section and CFI
checks are actually implemented by checking that the target of

some_function:

call *(ptr)

ret

call

some_function:

call fixed_func

ret

call some_function:

ret

call *(ptr)

CS-IC-R CS-F-R EP-IC-R

Fig. 4: Common gadgets used for performing function calls.
From left-to-right, we show two CS gadgets, the first including
an indirect call (IC) and the second a fixed-address (F) call,
both ending with a return (R). The last is an entry-point EP
gadget containing an IC and ending with a return.

a transfer is a valid entry in that section. This includes checking
for the three different targets (i.e., IDs) supported. Each entry
is 8 or 16 bytes long, and their location within the springboard
is randomized at load time. As a result, with CCFIR in play an
attacker also needs to identify the location of the appropriate
entries in the springboard instead of the location of modules.
Admittedly, this additional randomization requires more of the
attacker, who now would need to exfiltrate both the address of
a module, as well as instructions within the module that point
to the desired springboard entries.

We should emphasize that ASLR has been one of the most
important security features introduced in the last decade and
has significantly raised the bar for attackers. However, even
though we have not seen powerful memory inspection attacks,
such as the one described by Snow et al., yet, the sophistication
of attacks is increasing, and we have witnessed a plethora of
real exploits using memory disclosure bugs to bypass ASLR.
This paper does not focus on bypassing ASLR. We simply aim
to show that given ASLR, DEP, and a loose CFI mechanism
code-reuse attacks are still possible, which we demonstrate
with a real one-year old exploit in Sec. IV. Therefore, we
assume that the attacker has an exploit that grants him the
ability to disclose some addresses from the application, and
we want to determine, after bypassing ASLR, how hard it is
to overcome CFI defenses.

D. Calling Functions

Being able to call a function is crucial functionality for
executing an attack. We have the following options under CFI.

1) Through Indirect Calls: Consulting the last row in
Tab. I, we notice that indirect call instructions are always
allowed to jump to certain functions, i.e., non-sensitive func-
tions that are either exported by a module, or called through
a pointer. So, if we control the target of a call instruction,
because of the exercised exploit or otherwise, we can imme-
diately call them, launching a return-to-libc attack. The looser
the CFI model (e.g., sensitive functions are not distinguished
from nonsensitive), the more functions we can call this way.

2) Calling through Gadgets: We can extend the set of
functions we can call and how we call them (e.g., also through
ret and indirect jmp instructions) by using special gadgets

EP gadget

call *(ptr)

function_A:

EP gadget

call *(ptr)

function_B:

EP gadget

call *(ptr)

function_C:

function_F() should only be called

by certain functions, not function_A(),

otherwise it results in a stack corruption

CS gadget

ret

Stack corruption

Memory corruption

call *(ptr)

call *(ptr)

function_B:

EP gadget

ret

(a) CS-gadget linking

(b) EP-gadget linking

(c) Moving from EP- to CS-gadget linking

CS gadget
CS gadget

ret

ret

Memory corruption

call *(ptr)

EP gadget

function_A:

CS gadget

(d) Moving from CS- to EP-gadget linking

ret

Stack corruption

CS gadget

CS gadget

call *(ptr)

EP gadget

call *(ptr)

function_C:

Fig. 5: Different ways of linking gadgets.

like the ones shown in Fig. 4. Essentially, we look for gadgets
that include an indirect or fixed function call in their body.
For example, redirecting a function return to a CS-IC-R gadget
where we control the operand to the indirect call, allows us
to use the indirect call within the gadget as discussed above
(Sec. III-D1). Most importantly, gadgets that include fixed calls
enable us to also call sensitive functions, since there are no
CFI checks before direct calls and we can legitimately transfer
control to a CS-F-R gadget.

E. Linking Gadgets

We cannot link the gadgets available to us in arbitrary ways,
since not all control-flow transfers are permitted (Tab. I). If we
control the stack and a return instruction, then we can transfer
control to a CS gadget, and set up the stack to chain multiple
gadgets of the same type together, as in Fig. 5a. On the other
hand, if we first receive control with a call instruction, we
can only link EP gadgets, essentially performing call-oriented
programming (COP), like in Fig. 5b. Finally, if we control a
jump instruction, then based on which CFI model is applied
(e.g., CCFIR vs. bin-CFI) we can link CS or EP gadgets.

In certain cases, we may not be able to locate every
functionality required in a chain solely composed of CS- or EP-
gadgets, and need to link both types of gadgets. Fortunately,
there are ways to switch from one gadget type to another.
To switch from a chain of EP gadgets to CS gadgets, we
actually need to locate an EP-IC-R gadget that calls another
function through an indirect call, like in Fig. 5c. We need to

carefully select the called and caller functions, so that they
make erroneous assumptions with regard to the number of
arguments pushed in the stack or the calling convention used
(e.g., which one is responsible for popping elements from the
stack), with the end goal of corrupting the stack when the
called function returns, so we control the next return address.
When the EP-IC-R gadget returns, we can redirect control to
a CS gadget. The reverse process, shown in Fig. 5d, is more
forthright. We link a CS gadget to a CS-IC gadget, where we
control the operand of an indirect call. We can use that to
redirect control to an EP gadget.

Successfully linking different gadgets depends on our abil-
ity to identify the data used and set by gadgets. We say,
a gadget uses data in registers or memory when one of its
instructions uses the data before it is set. On the other hand,
set data refers to any data in registers or memory that are set by
the gadget before exiting. This is similar to the definitions used
in variable liveness analysis [32]. We can use static analysis
methods to locate which gadgets can be connected, however
this may not be necessary, if the size of the gadgets is relatively
small (see Sec. V).

Similarly, calling a function in a gadget chain, depends on
our ability to set up its arguments on the stack. We achieve
this by linking available gadgets to move arguments from
the controlled buffer to the appropriate registers or memory
locations. Moreover, we need to find gadgets that preserve
at least some function arguments, and in the case of indirect
calls the function pointer used. Section IV demonstrates the
feasibility of linking available gadgets to perform a successful
attack, including calling sensitive functions.

F. From Code-reuse to Code-injection

Traditional code-reuse attacks like ROP and return-to-libc
have been shown to be Turing complete [9], [13]. However,
with CFI in place fewer gadgets are available to implement any
functionality, on any application. Therefore, transforming our
code-reuse attack to a code-injection will grant us complete
freedom to implement any desired functionality, since CFI
applies only to existing code. This strategy is not new. Past
exploits [31] begun with a code-reuse payload that sets up a
code-injection, bypassing W⊕X semantics.

Such a transformation is achieved by using gadgets to call
an API or system call to alter the execute bit on an attacker-
controlled buffer and then redirect control to it. This route
of action is not possible under CFI because there is no way
to directly transfer control to a data buffer. To perform code-
injection, we adopt a novel approach that alters the writable bit
of existing code, then proceeds to overwrite that code with our
shellcode, and finally transfers control to the shellcode, which
now resides in a location where CFI will allow an indirect
transfer. We adopt such a method to bypass even the strictest
of the known CFI mechanisms, CCFIR.

To achieve our goal, we link existing gadgets to first call a
function wrapping the system call that allows us to change the
permissions of an existing memory area (e.g., VirtualProtect
on Windows systems). Then, we proceed to copy data from
our buffer to the code area using memcpy, and finally use an
indirect control-flow transfer to invoke our shellcode.

1

sort:
less_than:

jmp (back_stub - 2)

ret
back:

check ecx

ret
check return addr

fptr = less_than_stub

mov ecx, fptr

less_than_stub:

jmp less_than
jmp back

back_stub:

call ecx

Springboard section

Call function stub
(16-bit aligned)

Return address stub
(8-bit but not 16-bit aligned)

check return addr

Fig. 6: Function call and return redirection through the spring-
board section in CCFIR.

IV. PROOF-OF-CONCEPT EXPLOITATION

In this section, we describe the construction of a proof-
of-concept (PoC) exploit, which can compromise a vulnerable
binary hardened with CFI. Like before, we assume CCFIR, the
strictest of the loose-CFI frameworks, is in place. Nonetheless,
the way the exploit works is generic, making it applicable to
similar frameworks, like bin-CFI.

The exploit we use is based on a real heap overflow in
Internet Explorer [21], which gives control to an indirect jump.
The vulnerability is triggered by accessing the span and width
attributes of an HTML table’s column through JavaScript.
There are some interesting features of this vulnerability, which
we would like to point out. First, using this vulnerability we
can overwrite a virtual function table (VFT) pointer in a button
object, which eventually leads to control over the target of
an indirect jump instruction. Second, we can use the same
overflow to overwrite a string object’s size. We also have a
reference to that object, so we can manipulate the string’s size
to perform a memory disclosure attack. Third, we can trigger
the vulnerability multiple times, as long as we are careful so
as to not crash the process.

A. Gadget Locations in CCFIR

To better comprehend what data we need to exfiltrate and
how gadget chaining is implemented, when CCFIR is de-
ployed, we will briefly explain how it checks indirect control-
flow transfers through its springboard section. We refer readers
to the original paper [16] for additional details.

CCFIR operates using a special memory layout, where all
indirect calls, jumps, and returns are served through a special
springboard section. Lets revisit the example from Fig. 2,
which we redraw in Fig. 6 to reflect how a function call/return
is made in CCFIR. For every function with a relocation entry
(CCFIR was implemented for Windows), CCFIR creates a call
function stub, which is placed in the springboard. Call stubs
simply contain a direct jump to their corresponding function.
Similarly, every possible return address (i.e., locations follow-
ing a call instruction) also has a return address stub in the
springboard. The return stubs include a direct jump back to

the corresponding return address, but are also prefixed with an
indirect call instruction (call ecx).

To secure indirect calls and returns, CCFIR uses the
information in the relocation and exported functions section
to replace the function pointers in a binary with pointers to
their function stubs (e.g., fptr ← less_than_stub). Notice that
this is only done for non-sensitive functions. It then replaces
indirect calls with a direct jump to the springboard. The call
in the springboard pushes the return stub’s address into the
stack, so the called function can return safely. Information flow
is enforced by aligning the call and return stubs at different
address boundaries, emulating this way two IDs, and then
checking that the address of a function or a return address
follow this alignment. Returns from sensitive functions are
omitted for brevity.

B. Exploitation Requirements

To successfully perform the exploitation, we make use of
two techniques: heap Feng Shui [25] and heap spraying [33].
The first technique is required to position the vulnerable buffer,
string object, and the button object in the right order in the
heap, so that when the vulnerable buffer is overflowed the
first time, the string object’s size property gets overwritten to
build the memory disclosure interface. When the vulnerable
buffer is overflowed the second time, the button object’s
VFT pointer is overwritten. The latter technique is required
to “spray” a specially crafted buffer in memory. This buffer
guides the gadget-chaining process from the initial indirect
transfer instruction to code injection. Heap spraying works
by making many copies of our buffer to get it allocated at
a reliably determined address. This address is written to the
VFT pointer of the button object. Even though there is the
possibility of failure, heap spraying works very well in this
particular exploit, resulting in consistent results over different
runs. In the sections below, we will refer to this buffer as the
sprayed buffer.

C. Memory Disclosure

The PoC exploit uses memory disclosure for bypassing
two constraints. First, we assume ASLR is in place, so we
need to resolve the base addresses of modules of interest (e.g.,
DLLs). Second, because CCFIR uses the springboard to check
and authorize indirect transfers, we also need to obtain the
addresses of function call and return stubs that correspond to
our gadgets. For instance, to return to a CS gadget, we need
to use its return address stub, so that the CFI check will not
fail.

The vulnerability we use allows us to leak memory by
overwriting the size field of a string object and reading values
past the original boundary of the object. We now discuss how
we leak the base addresses of the two DLLs containing all the
gadgets used in the exploit, namely mshtml.dll and ieframe.dll,
as well as how we reveal stub addresses in the springboard.

mshtml.dll. The base address of mshtml.dll is revealed by the
VFT pointer (not a function pointer) within the button object.
The location of this pointer is at a constant relative offset from
the string object. Reading this relative offset with the string
object, reveals the pointer value. Because this pointer targets
a constant known offset in mshtml.dll, the base address of the

library can be derived by subtracting the known offset from
the pointer value.

ieframe.dll. To find its base address, we read the address of
a function contained in iframe.dll and imported in mshtml.dll.
Although, we can compute the absolute address of the location
by reading mshtml.dll, we actually need its value relative to the
string object. Therefore, the address of the string object has to
be revealed first. Fortunately, the button object (positioned after
the string object) has a reference to a location that has a fixed
relative distance to the string object. By subtracting the fixed
relative distance from the reference value, we reveal the string
object’s address. Once the string object’s address is known,
the relative distance from the string object to the imported
address can be computed. Consequently, the imported address
will reveal the base of ieframe.dll.

However, assuming that both these DLLs are protected
by CCFIR, the imported function’s address that we extract
from mshtml.dll actually points to a function call stub in the
springboard. To obtain the real location of the function, we
need to perform another read to obtain the jump address (or
offset) from the stub. The rest of the process is the same as
without CCFIR. With the two base addresses in hand, the
gadget offsets in the buffer can be located at run time.

CCFIR stubs. Having the modules’ base addresses and the
offsets for the EP and CS gadgets we intend to use, we need
to reveal the stubs corresponding to the gadgets. In a CCFIR-
protected library all call sites have direct references to their
stubs. Since the call-site offsets in the library are known,
direct references to the stubs can be discovered. By resolving
these direct references, we get the stub for the call-site gadget.
Although the entry-point offsets are also known, they do not
reveal their corresponding stub in the springboard. However,
the entry points that have a stub in the springboard also have a
relocation entry in the code. CCFIR alters the relocation entries
such that they point to the corresponding stubs of the entry
points in the Springboard. Thus, by resolving the relocation
entries, we get the stub for the entry point gadgets.

D. Gadget chaining

The PoC exploit is based on three generic phases. The
first phase aims at converting the indirect jump we control
to a return instruction. This gives us further flexibility in
subverting the control flow of the process, since in the presence
of CFI indirect jumps are constrained. However, once we have
control over a return instruction, we need to also leverage
a fake stack so that we can further execute more gadgets.
This task is essentially known as stack pivoting [10] and it
is very common in modern exploits, which in our case is a
more complicated process.2 Therefore, we treat it as a separate
phase in the exploit’s time line. The third and final phases aim
at changing memory permissions using available API calls,
such as VirtualProtect and memcpy, for making the shellcode
executable and jumping to it. We discuss each of the three
phases of the PoC exploit in detail. For each phase, we present
the high-level mechanics and (for the interested reader) provide

2Stack pivoting usually involves the leveraging of a fake stack by pointing
esp to the location where the ROP chain is stored. This can be achieved by
using just one gadget, which moves esp accordingly. Simulating the same task
in a constrained environment with EP/CS gadgets is significantly harder.

...
call dword ptr [ecx+10h]
test eax, eax
...
retn 8

mov eax, [ecx+74h]

retn

...

call dword ptr [edi+14h]

...

call dword ptr [eax+0C4h]

...

Memory corruption

CFI CHECK

jmp *(ptr)

...

CFI CHECK

ret

CExtensionItem::GetIDPropertyValue

EP-IC-R (iframe.dll)

CSearchDUIListRoW::Reset

EP-IC (iframe.dll)

DirectUI::BaseScrollBar::LineUp

EP-IC (iframe.dll)

CTabWindowManager::LocalGetComponentHandle

EP-R (iframe.dll)

Control Return
Instruction

Indirect Jump
Vulnerable Function

Fig. 7: Schematic representation of how the four EP gadgets
are chained in the initial phase of the PoC exploit. Using
these four EP gadgets we manage to transfer control from
an indirect jump to a return instruction. Notice that we can
actually leverage small EP gadgets, which essentially resemble
traditional ROP gadgets like the one in Fig. 2 (the EP-R gadget
based on the LocalGetComponentHandle function) which is
composed solely by a mov instruction followed by a retn.

references to the actual gadget code used, which are listed in
the Appendix A.

Phase 1: Transfer control to a return instruction. The
exploit we use grants us control of an indirect jump instruction.
However, because there are far more CS gadgets in number,
as we discuss in Sec. V, and because of the extra steps
required to locate EP gadgets, we want to eventually gain
arbitrary control of a return instruction. In the case of bin-
CFI, jump instructions can transfer control to a CS gadget
(Tab. I). However, in the case of CCFIR transferring control
from an indirect call or jump instruction to a return instruction
is not straightforward. The only function which can be used
for this purpose is longjmp, which returns to a location that
is provided through a buffer. However, CCFIR tags longjmp
as a sensitive function and prevents any indirect control-flow
instruction to direct execution to it.

Therefore, we need to selectively call gadgets that even-
tually give us control of a return instruction. The main idea
is to use the indirect jump we have to jump to code that (a)
pushes on the stack a return address which we can influence
through the sprayed buffer, and (b) has an indirect call or
indirect jump for calling a “stack smasher” or another EP
gadget. In our PoC, exploit we have chained four gadgets for
carrying out the whole task, which we present in Gadgets 1-1
to 1-4 in Appendix A. Gadget 1-1 pushes an address we control
as a return address on the stack and Gadget 1-2 breaks the
caller’s assumptions by just popping the return address from
the stack. Gadget 1-3 sets a pointer to the sprayed buffer as an
argument on the stack, but requires control over edi, so we use
Gadget 1-4 for this. The order in which the gadgets are chained
is depicted in Figure 7. Notice that we can actually leverage
small EP gadgets which essentially resemble traditional ROP
gadget — like Gadget 1-2 which is composed solely of a mov
instruction followed by a retn.

Phase 2: Stack pivoting. The instruction that is executed just
before the first controlled return instruction is a pop instruction

which loads the top of the stack into ebp (see Gadget 1-1).
However, the top of the stack contains already a pointer to
our buffer and therefore ebp is loaded with a value we can
influence. Nevertheless, we still have to move the value of
ebp to esp. This is done by having the first controlled return
instruction transfer control to Gadget 2-1, which essentially
points esp to the sprayed buffer. However, we are not there
yet, since we want esp to point to the ROP chain within the
sprayed buffer. We need to further shift esp using Gadget 2-2.
A familiar reader can notice that chaining these gadgets causes
esp to increase by 0x30 bytes (12 dwords) and by 0x18 bytes
(6 dwords), respectively.

Phase 3: Change memory permissions. So far, in phases 1
and 2, we managed to gain control of a return instruction and
point the stack to the ROP chain hosted in the sprayed buffer.
The best way to proceed from here is to transform our code-
reuse attack to a code-injection attack. Since, conventional
ways of injecting code do not work because of DEP and CFI,
we adopt a novel approach, which we already discussed in
Sec. III-F. Instead of making data executable we overwrite
part of the program’s code with shellcode. We do so by
making a code area writable using a call to VirtualProtect
and then overwrite it with shellcode using memcpy. Since, we
cannot directly call VirtualProtect because it is considered to
be a sensitive function for CCFIR, we use a CS-F-R gadget.
memcpy on the other hand is not sensitive, so we can also call
it using a CS-IC-R gadget. The two CS gadgets we used are
Gadgets 3-1 and 3-2.

V. EVALUATION

In this section, our main goal is to show that the type of
gadgets we defined in Sec. III and used in Sec. IV are very
common and can be found on many popular applications. This
serves to show the generality of our attack and to reveal the
extent of the problem.

We selected and analyzed six widely used applications on
Windows 7 x86: Internet Explorer 9.0.20, Firefox 24.0, Adobe
Reader XI 11.0.5, and Word, Excel, and PowerPoint from the
Microsoft Office Professional Plus 2013 suite. We launched
the binaries and collected the set of libraries each one uses.
In total, the whole dataset including applications and libraries
consisted of 164 unique PE files. For each of these files, we
used the popular disassembler IDA Pro to disassemble and
collect the statistics presented throughout this section.

We collected the gadget types described in Sec. III. In
particular the following: (EP/CS)-R, (EP/CS)-IC-R, (EP/CS)-
F-R, (EP/CS)-IJ, and (EP/CS)-IC. All these types are usable
under CFI and we have demonstrated their use in our proof-
of-concept exploit. Let us use an example to explain the
gadget collection process. Consider the case where we begin
disassembling a function within a PE file, and we locate a
call instruction. In this case, we define a CS gadget starting
directly after that instruction, unless we are at the end of the
function. We then analyze the instructions following, until we
reach a fixed call to a function that has a resolved function
name, or an indirect transfer, such as a return, indirect call, or
jump. At that point, we classify that gadget as a CS-F, CS-R,
CS-IC, or CS-IJ. For CS-F and CS-IC gadgets, we can continue
processing until we find a return, in which case we classify
the gadget as a CS-F-R or CS-IC-R instead.

TABLE III: Distribution of gadget types in Internet Explorer
9. For gadgets including branches, we count all paths from a
particular CS or EP to an exit instruction.

Internet Explorer 9
Gadget Gadgets Gadgets
Type w/o Branches w/ Branches
CS-R 179098 398282

CS-IC-R 12400 124638
CS-F-R 44728 251706
CS-IJ 456 496
CS-IC 59252 297266
Sum 295,934 1,072,388

Unique call sites 295,934 390,910

EP-R 7043 37266
EP-IC-R 2353 7491
EP-F-R 4498 12984
EP-IJ 1183 371
EP-IC 2838 4753
Sum 17,915 62,865

Unique entry points 17,915 27,778

We limit the maximum number of instructions we follow
after an entry point to 30 for three reasons. First, the longest
gadget our PoC exploit uses is a CS-F-R gadget of 26 instruc-
tions. Second, traditional ROP attacks prefer to use shorter
gadgets. Finally, we desired to keep the search space for the
analysis reasonable.

Gadgets containing branches. During the analysis, we take
into account conditional branches within gadgets. In the case of
branches, we enumerate distinct paths leading from a gadget
entry point (i.e., CS or EP) to an exit point (i.e., R, IJ, or
IC), since based on the path followed at run time, a different
set (and number) of instructions is executed. So there may be
many different gadgets beginning from a specific entry point.
These gadgets can be more complex, so we choose to report
on them separately from simpler ones that do not include any
branches.

Also, for simplicity we exclude gadgets that may be part
of a loop. We detect such gadgets by identifying cycles in
the static CFG of functions. Note that loops and gadgets with
branches can be very useful for attackers, and we do use a few
gadgets with branches in the attack described in Sec. IV, but
broadly determining their usability requires further research
and is beyond the scope of this paper. Table III lists the
different types of gadgets found in Internet Explorer 9. We
list both gadgets with and without branches. As expected, the
number of gadgets including branches is larger than simpler
gadgets. It would be, therefore, interesting to investigate ways
that these gadgets could be easily used.

Gadget distribution. Table IV lists the number and types of
gadgets in various applications. The table lists only simple
gadgets that do not include branches. For each application, we
first list the total number of gadgets that can be found in the
application at run time. This includes the gadgets found in
the application binary, as well as all the DLLs loaded by the
binary at run time.

Calling sensitive functions. Certain system functions are re-
stricted by CFI approaches like CCFIR. To call such functions,
like the VirtualProtect function used in Sec.IV, we need to use
a CS-F-R or EP-F-R gadget. Table V lists the number of such

TABLE IV: Number of gadgets per gadget type per application. For each application we show the numbers in ‘all’ PE files
and in its largest specific PE file. Although ieframe.dll is used also by the Word, Powerpoint, and Excel applications, we added
it under IE9 especially because the ieframe.dll is also used in the PoC exploit. Furthermore MSO.dll is the largest specific
Microsoft Office PE file and shared by the Word, Powerpoint and Excel applications. The numbers are collected from gadgets
without branches.

App PE file Entry Point Gadgets Call Site Gadgets
name EP-R EP-IC-R EP-F-R EP-IJ EP-IC CS-R CS-IC-R CS-F-R CS-IJ CS-IC

IE9 all 7043 2353 4498 1183 2838 179098 12400 44728 456 59252
mshtml.dll 1748 652 126 912 759 38559 5917 4865 52 8638
ieframe.dll 654 201 363 6 127 18252 1326 5333 31 5684

Adobe Reader XI all 18303 1772 8447 1082 2085 166175 5641 62500 1480 40091
AcroRd32.dll 13106 650 3099 778 372 58027 1156 25276 1213 12587

Firefox 24 all 9773 2611 6316 635 2785 233183 8951 52883 465 45949
xul.dll 3281 1349 1781 172 900 101475 4812 16617 97 23181

Word 2013 all 13955 3764 9563 780 3798 352170 11749 74498 839 129671
WWLIB.dll 962 413 690 33 284 60289 1665 3426 34 31913

PowerPoint 2013 all 15425 3922 10214 893 3835 351969 10942 90826 987 114909
PPCore.dll 1842 460 1144 111 236 50625 704 16758 161 12309

Excel 2013 all 14026 3526 9249 837 3638 340511 11320 74226 859 119016
Excel.exe 1313 214 357 102 198 54414 1274 4005 60 21698

Microsoft Office 2013 MSO.dll 4376 934 2858 124 520 82006 2200 14612 169 24819
Shared all 2271 731 2682 171 1395 67209 2506 23203 204 15521

shell32.dll 671 303 690 7 370 21864 1237 10192 54 9127

TABLE V: Number of gadgets that contain fixed calls to sensitive functions (i.e., CS-F-R or EP-F-R) in the largest application-
specific PE files. Like in Table IV, ieframe.dll is added under IE9.

App PE file Gadget Process Memory Management Move Memory Library Loading File Functions
name type (e.g., CreateProcess) (e.g., VirtualAlloc) (e.g., memcpy) (e.g., LoadLibrary) (e.g., CreateFile)

IE9
mshtml.dll EP 0 0 3 0 3

CS 0 0 173 52 54

ieframe.dll EP 0 0 4 0 2
CS 1 7 51 45 183

Adobe AcroRd32.dll EP 0 0 1 1 18
Reader XI CS 0 10 144 53 65

Firefox 24 xul.dll EP 0 0 32 0 1
CS 0 5 407 31 62

Word 2013 WWLIB.dll EP 0 0 12 0 1
CS 0 2 87 27 30

PowerPoint PPCore.dll EP 0 0 23 0 1
2013 CS 0 0 40 19 16

Excel 2013 Excel.exe EP 0 0 9 0 1
CS 0 4 29 30 6

Microsoft MSO.dll EP 0 0 28 0 17
Office 2013 CS 0 12 290 58 284

Shared shell32.dll EP 0 0 1 0 4
CS 1 12 30 12 81

gadgets that can be found in the largest application-specific
PE files within our dataset. We observe that the number of
such gadgets is significantly smaller from the total number of
available gadgets. Nevertheless, functions of particular interest
to attackers are accessible. The small number of such gadgets
indicates that it may be possible to develop a mitigation
technique based on completely eliminating the ability to call
sensitive functions through code-reuse.

Size distribution of gadgets. Figures 8 and 9 show the fre-
quency of gadget sizes for gadgets without and with branches
respectively in Internet Explorer 9. Surprisingly, we observe
that there is a significant number of smaller gadgets, indicating
that ROP attacks under CFI are closer to conventional ROP
than we thought. Another, interesting observation is that in
Fig. 8, there is a peak for gadgets with 21 instructions. After
investigating, we determined that this occurs due to a block in
the ole32.dll library that has 1021 pointers (JMPs) pointing to
it.

VI. DISCUSSION

A. Other Vulnerable Defenses

kBouncer [34] monitors a process to detect function returns
to addresses not preceded by a call instruction. It leverages
Last Record Branch (LBR), a hardware feature recently in-
troduced in the Intel architecture. kBouncer is able to prevent
conventional ROP attacks because they use small gadgets and
do not attempt to restrict the gadget pool. Gadget chains like
the ones described in the paper would evade detection, since
they exhibit different behavior.

However, kBouncer also introduces a heuristic based on the
observation that ROP attacks perform an excessive number of
returns without calls. This heuristic could certainly detect gad-
get chains consisting entirely of CS-R gadgets. Nevertheless,
we believe that we could potentially bypass it by using CS-F-R
or CS-IC-R gadgets to call a function simply for tricking
kBouncer. More experimentation is required before we can
make any confident claims in this area.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

(#
)

C
ou

nt

Gadget Length

Gadget Sizes found in IE9 without Branches

CS
EP

Fig. 8: Frequency of gadgets without branches in IE9 based
on their length (instruction count).

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

(#
)

C
ou

nt

Gadget Length

Gadget Sizes found in IE9 with Branches

CS
EP

Fig. 9: Frequency of gadgets including paths with branches in
IE9 based on path length (instruction count).

G-free [35] recompiles a program and performs a set
of transformations for eliminating gadgets, enforcing aligned
code, and preventing code from jumping in the middle of a
function. The latter is enforced by setting a random cookie dur-
ing function entrance and checking for the cookie’s integrity at
function exit. This mitigation essentially breaks all CS gadgets
we use throughout this paper, since a CS gadget essentially
transfers control to a call-site, without entering the function
hosting the call site normally. Nevertheless, all EP gadgets
can still work and therefore attacks like ret2libc [13] may be
still possible, depending on the actual vulnerability. Also, our
PoC exploit shows that while chaining EP gadgets is harder, it
is possible. Further research is required to determine if EP-F-*
gadgets could be also used to bypass G-free.

B. Possible Defenses

In their original CFI work Abadi et al. [14] proposed a
shadow call stack [36], [22] that is securely maintained at run
time to harden CFI. The shadow stack keeps a copy of the

return addresses stored in the program stack, in a way that
a prospective attacker cannot overwrite them. For instance,
by using segmentation in x86 CPUs, a feature which has
been discontinued in 64-bit CPUs. Even though not without
problems and incurring additional overhead, such a run-time
companion provided higher security guarantees. Unfortunately,
correctly tracking a shadow stack is not trivial, as every call
instruction is not necessarily matched by a ret. For instance,
compiler-applied optimizations, such as the tail-call optimiza-
tion, can end a function with a call, and the called function
is responsible for cleaning up the stack to return directly to
the caller’s parent. Other optimizations also introduce such
asymmetry between the number of calls and returns.

ROPDefender [37] is another approach, also using a
shadow stack, that aims to enforce a call-ret pairing policy,
therefore any ret instructions which have not been triggered
by a call will be detected. However, this approach also suffers
from the problems listed above, while it also incurs non-
negligible overhead.

Another possible defense is Control-Flow Locking
(CFL) [38] which uses locks to preserve CFG integrity. It im-
plements a lock operation before indirect control-flow transfers
and an unlock operation before valid targets. The locks and
unlocks are paired according to computed key values based
on the links in the CFG which is extracted using source code.
CFL detects violations once a lock or unlock operation fails.
We believe that CFL is a promising direction, and it would be
able to prevent our attack, however it is hard to apply in the
absence of source code.

A more ad-hoc defense would focus on preventing the
application from making its text segment, as well as the
springboard in the case of CCFIR, writable. Even though that
would not prevent the code-reuse part of our attack, it would
raise the bar, as we would no longer be able to inject code.

VII. RELATED WORK

In this section we present related research. We start with a
short survey of how defenses have evolved in the face of more
elaborate attacks, and then we place our work in context with
related CFI research.

A. Advanced Mitigation Techniques

Traditional exploitation through stack smashing and code
injection is considered today hard due to the massive adoption
of stack canaries [3] and Data Execution Prevention (DEP) [2],
respectively, by all of the most popular commodity operating
systems. Most of the modern microprocessor architectures
also support a special MMU feature, well-known under the
generically accepted No eXecute (NX) bit term – although
different brands use their own acronym to refer to the same
technology – to facilitate DEP. Essentially, DEP will force
the process to crash in any attempt to execute code placed
in data. Therefore, since foreign code cannot be introduced,
adversaries can only utilize existing code in the process image.
For example, they can force the program to jump to a particular
function after having prepared the stack accordingly. This
technique is called return-to-libc [13], reflecting the classic
idiom of calling a libc function (system or the exec family)

for spawning a shell. Leveraging existing code for compro-
mising a program has been generalized in Return-Oriented
Programming (ROP) [9], where short snippets of code called
gadgets are chained together to introduce a new, not initially
intended, control flow. ROP can especially take advantage
of the density of instruction sets in CISC architectures and
the availability of overlapping instructions due to the lack of
instruction alignment. Nevertheless, it has been shown that
ROP is possible in RISC architectures [27], or it can be carried
out without using the ret instruction [11], [12] making defenses
that are based on the emulation of the ret command less
effective [24].

Defenses against ROP are based on randomization of a
process’ layout so that adversaries lack knowledge of where
the program’s code is mapped in the virtual address space.
The most straightforward way to achieve this is by using
Address Space Layout Randomization (ASLR) [4], which
maps processes and dynamically linked libraries in random
addresses each time. Unfortunately, ASLR with low entropy
can be brute-forced [30] and, worse, in the presence of memory
disclosure, attackers are able to leak a few memory addresses
and thus bypass any protection offered by ASLR completely.
As a result, many proposals where introduced for fine grained
randomization in executables by applying in-place randomiza-
tion [39], breaking the linearity of the address-space [40], or
shuffling the basic code blocks of a program [41]. Again, in the
presence of powerful exploits that can arbitrarily leak memory,
it has been shown that fine grained randomization techniques
fail in protecting the vulnerable program [5]. In this paper,
although we use the same powerful exploit [5], we do not
take advantage of arbitrarily leaking all process memory.

B. CFI Research

Control-Flow Integrity (CFI) [14] was originally introduced
as a generic methodology for enforcing the integrity of a
program’s control-flow graph, as realized by a compiler or
discovered using static analysis before program execution, by
prohibiting all unseen control flows at run time. Typically, the
program’s code is marked with labels and checks that validate
intended control flows. CFI can be applied in principle in any
system, like for example smarthphones [18], [42]. CFI has two
major limitations. First, discovering the complete control-flow
graph is not always possible – although recent attempts towards
that direction are promising [43], [44] – and, second, applying
complete CFI in a program often incurs high performance
overhead. For this, researchers have attempted to relax CFI
by applying it directly to binaries [16], [17]. In this paper, we
explore how this relaxation degrades the effectiveness of CFI
and how adversaries can take advantage of it for bypassing
CFI protection. CFI can be leveraged for enforcing Software
Fault Isolation [19] and constraint additional program code in a
sandbox. Many popular pure SFI frameworks, like for example
Native Client [45], [46] or SFI-inspired policy frameworks, like
XFI [47] and WIT [48], employ CFI-checks to prevent flows
from escaping the sandbox. On the other hand, ideas from SFI
implementations can be used for enforcing CFI. For example,
CCFIR [16] uses a similar memory layout (Springboard) with
the one used by Native Client (NaCl) [45], [46].

VIII. CONCLUSION

In this paper, we have examined the security implications
of looser notions of control flow integrity (CFI). The looser
notions of CFI are fast, but allow certain control flows in
a program’s execution that were not in its original control-
flow graph. Specifically, we have shown that such permissible,
but incorrect, flows of control allow attackers to launch ROP
attacks that by their nature are just as powerful as regular
ROP exploits. While the novel ROP chains are based on two
new types of gadget (and thus have gadget sets that are more
limited than regular ROP), we also show that such gadgets
are still widely available and that the gadget set is broad
and powerful. Finally, a proof-of-concept exploitation against
Internet Explorer, that bypasses modern CFI implementations,
demonstrates that our techniques are practical.

As CFI is one of the most powerful defensive measures
currently available against advanced exploitation techniques,
we believe these results to be highly relevant. Specifically, our
results suggest that a CFI solution based on static analysis
alone may not be sufficient for comprehensive protection
against ROP attacks, and that permitting any additional edges
in the control-flow graph introduces vulnerabilities that may
be exploited. We expect new CFI solutions to utilize static
information as much as possible, but it is unlikely that the
stricter notions of CFI can work without the use of run-
time information. There is no question that gathering such
information comes at a cost in performance, but neglecting
to do so comes at the cost of security.

ACKNOWLEDGEMENT

We want to express our thanks to anonymous reviewers
for valuable comments. This work was supported by the US
Air Force through Contract AFRL-FA8650-10-C-7024. Any
opinions, findings, conclusions or recommendations expressed
herein are those of the authors, and do not necessarily reflect
those of the US Government, or the Air Force. This work was
also supported in part by the ERC StG project Rosetta, the
FP7-PEOPLE-2010-IOF project XHUNTER, No. 273765, and
EU FP7 SysSec, funded by the European Commission under
Grant Agreement No. 257007.

REFERENCES

[1] N. Joly, “Advanced exploitation of Internet Explorer 10 / Win-
dows 8 overflow (Pwn2Own 2013),” VUPEN Vulnerability Research
Team (VRT) Blog, May 2013, http://www.vupen.com/blog/20130522.
Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php.

[2] S. Andersen and V. Abella, “Changes to functionality in microsoft
windows xp service pack 2, part 3: Memory protection technologies,
Data Execution Prevention,” Microsoft TechNet Library, September
2004, http://technet.microsoft.com/en-us/library/bb457155.aspx.

[3] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang et al., “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th USENIX Security Symposium, vol. 81, 1998, pp. 346–355.

[4] PaX Team, “Address Space Layout Randomization (ASLR),” 2003,
http://pax.grsecurity.net/docs/aslr.txt.

[5] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proceedings of the 34th
IEEE Symposium on Security and Privacy, May 2013.

http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://pax.grsecurity.net/docs/aslr.txt

[6] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the 2nd European Workshop on System Security, 2009, pp. 1–8.

[7] F. J. Serna, “CVE-2012-0769, the case of the perfect info leak,” http:
//zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf.

[8] C. Evans, “Exploiting 64-bit Linux like a bos,” http://scarybeastsecurity.
blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html.

[9] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and Communications security, October
2007, pp. 552–61.

[10] D. Dai Zovi, “Practical return-oriented programming,” SOURCE
Boston, 2010.

[11] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and Communi-
cations Security, October 2010, pp. 559–72.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ASIACCS, March 2011, pp. 30–40.

[13] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the expressiveness of return-into-libc attacks,” in Proceedings of
the 14th international conference on Recent Advances in Intrusion
Detection, 2011, pp. 121–141.

[14] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and Communications Security, 2005, pp. 340–353.

[15] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proceedings of the 2010
IEEE Symposium on Security and Privacy, 2010, pp. 380–395.

[16] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in Proceedings of the 1013 Security
and Privacy Symposium, 2013, pp. 559–573.

[17] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in
22nd USENIX Security Symposium, 2013.

[18] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi, “MoCFI: A framework to mitigate
control-flow attacks on smartphones,” in Proceedings of the 19th Annual
Network and Distributed System Security Symposium, February 2012.

[19] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles, 1993, pp. 203–216.

[20] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in
Proceedings of the 18th ACM conference on Computer and Commu-
nications Security, 2011, pp. 29–40.

[21] A. Pelletier, “Advanced exploitation of Internet Explorer heap overflow
(Pwn2Own 2012 exploit),” VUPEN Vulnerability Research Team (VRT)
Blog, July 2012, http://www.vupen.com/blog/20120710.Advanced_
Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php.

[22] Vendicator, “StackShield,” http://www.angelfire.com/sk/stackshield/.
[23] M. Hind, “Pointer analysis: haven’t we solved this problem yet?”

in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, 2001, pp. 54–61.

[24] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating return-
oriented rootkits with return-less kernels,” in Proceedings of the 5th
European conference on Computer systems, 2010, pp. 195–208.

[25] A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe, 2007.
[26] Pakt, “Ropc - a turing complete rop compiler,” https://github.com/pakt/

ropc.
[27] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good in-

structions go bad: Generalizing return-oriented programming to RISC,”
in Proceedings of CCS 2008, P. Syverson and S. Jha, Eds. ACM Press,
Oct. 2008, pp. 27–38.

[28] Corelan, “Mona: a debugger plugin / exploit development swiss army
knife,” http://redmine.corelan.be/projects/mona, 2011.

[29] N. Joly, “Technical analysis and advanced exploitation of Adobe Flash
0-day (CVE-2011-0609),” VUPEN Vulnerability Research Team (VRT)

Blog, March 2011, http://www.vupen.com/blog/20110326.Technical_
Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-
0609.php.

[30] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and Communications Secu-
rity, 2004, pp. 298–307.

[31] N. Joly, “Criminals are getting smarter: Analysis of the Adobe
Acrobat/Reader 0-day exploit,” VUPEN Vulnerability Research
Team (VRT) Blog, September 2009, http://www.vupen.com/blog/
20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-
2883_Technical_Analysis.php.

[32] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, & Tools. Addison Wesley, 2006.

[33] DarkReading, “Heap spraying: Attackers’ latest weapon of choice,”
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?
articleID=221901428, November 2009.

[34] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in Proceedings of the
22nd USENIX Security Symposium, 2013, pp. 447–462.

[35] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free:
Defeating return-oriented programming through gadget-less binaries,”
in Proceedings of the 26th Annual Computer Security Applications
Conference, 2010, pp. 49–58.

[36] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated stack
protection,” in Proceedings of the 10th USENIX Security Symposium,
August 2001, pp. 55–66.

[37] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A detection
tool to defend against return-oriented programming attacks,” in Pro-
ceedings of the 6th ACM ASIACCS, 2011, pp. 40–51.

[38] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks with
control-flow locking,” in Proceedings of the 27th Annual Computer
Security Applications Conference, 2011, pp. 353–362.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, 2012, pp. 601–615.

[40] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d my gadgets go?” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, 2012, pp. 571–585.

[41] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[42] J. Pewny and T. Holz, “Control-flow restrictor: Compiler-based CFI for
iOS,” in Proceedings of the 29th Annual Computer Security Applica-
tions Conference, 2013.

[43] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and
R. Barua, “A compiler-level intermediate representation based binary
analysis and rewriting system,” in EuroSys, 2013, pp. 295–308.

[44] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 de-
compilation using semantics-preserving structural analysis and iterative
control-flow structuring,” in Proceedings of the USENIX Security Sym-
posium, 2013.

[45] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm, S. Okasaka,
N. Narula, N. Fullagar, and G. Inc, “Native Client: A Sandbox for
Portable, Untrusted x86 Native Code,” in Proceedings of the 2007 IEEE
Symposium on Security and Privacy, 2009.

[46] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting software fault isolation to contemporary
cpu architectures,” in Proceedings of the 19th USENIX conference on
Security, 2010.

[47] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:
Software guards for system address spaces,” in Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, 2006,
pp. 75–88.

[48] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with wit,” in IEEE Symposium on Security and
Privacy, 2008, pp. 263–277.

http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://www.angelfire.com/sk/stackshield/
https://github.com/pakt/ropc
https://github.com/pakt/ropc
http://redmine.corelan.be/projects/mona
http://www.vupen.com/blog/20110326.Technical_Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-0609.php
http://www.vupen.com/blog/20110326.Technical_Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-0609.php
http://www.vupen.com/blog/20110326.Technical_Analysis_and_Win7_Exploitation_Adobe_Flash_0Day_CVE-2011-0609.php
http://www.vupen.com/blog/20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_Technical_Analysis.php
http://www.vupen.com/blog/20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_Technical_Analysis.php
http://www.vupen.com/blog/20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_Technical_Analysis.php
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428

APPENDIX

A. PoC Exploit Gadgets

; library: mshtml.dll
; offset: 0x001BC907

1 mov ecx, [ecx+24h]
2 mov eax, [ecx]
3 mov edx, [eax+24h]
4 jmp edx

Gadget 0-1: (Phase 0, Gadget 1). The few instructions
executed before the first controlled indirect control-transfer
instruction. First ecx gets loaded with a pointer to the button
object in the heap (line 1) and then eax gets loaded with the
object’s vtable pointer which is overwritten with a pointer
to our buffer by using the heap buffer overflow vulnerability
in Internet Explorer 8. Our buffer contains the data required
to guide the process in performing a code injection exploit.
Because we assume CCFIR is in place, the target of the jmp
instruction must be an entry point (see Gadget 1-4).

; library: ieframe.dll
; offset: 0x002B6D88
; type: EP-IC-R

1 mov edi, edi
2 push ebp
3 mov ebp, esp
4 mov eax, [ebp+8]
5 push dword ptr [ebp+0Ch]
6 mov ecx, [eax]
7 push dword ptr [eax+0Ch] ; push return address
8 push eax
9 call dword ptr [ecx+10h]
10 test eax, eax
11 jge short loc_76836DA5 ; if eax >= 0:---+
12 mov eax, 80004005h ; |
13 pop ebp ; <--------------+
14 retn 8

Gadget 1-1: (Phase 1, Gadget 1). The main gadget used to
transfer control from an indirect call to a return instruction.
The instruction at line 7 pushes the return address to the
stack. If we can point eax and the data at eax+0Ch to
the sprayed buffer, we can make the function return to our
desired address. Notice, that eax is loaded from the stack
(line 4), which we can poison by feeding the right arguments
when calling this gadget with an indirect call. In the same
fashion, we can call a second gadget by pointing ecx in the
sprayed buffer through eax (line 6). The latter is presented
in Gadget 1-2.

; library: ieframe.dll
; offset: 0x000A647C
; type: EP-R

1 mov eax, [ecx+74h]
2 retn

Gadget 1-2: (Phase 1, Gadget 2). This gadget removes only
the return address from the stack. By breaking the caller’s
assumptions, at the moment the caller returns, its return
instruction will point to our desired return address, which
we have pushed on the stack by means of registers that point
to the sprayed buffer (see Gadget 1-1).

; library: ieframe.dll
; offset: 0x002869F0
; type: EP-IC

1 mov edi, edi
2 push esi
3 mov esi, ecx
4 mov eax, [esi]
5 push edi ; callee’s argument
6 call dword ptr [eax+0C4h]
...

Gadget 1- 3: (Phase 1, Gadget 3). The main gadget (see
Gadget 1-1) requires a pointer to the buffer as an argument
on the stack so we use this gadget to satisfy this requirement.
However, this gadget is based on edi, which we have not yet
defined. Therefore we use the last gadget of this phase, which
is presented in Gadget 1-4.

; library: ieframe.dll
; offset: 0x0030B665
; type: EP-IC

1 mov edi, edi
2 push ebp
3 mov ebp, esp
4 push ebx
5 push esi
6 mov esi, ecx
7 push edi
8 mov edi, [esi] ; edi pointer to buffer
9 call dword ptr [edi+14h]
...

Gadget 1-4: (Phase 1, Gadget 4). This gadget defines edi, as
needed by Gadget 1-3 using esi, which is loaded with ecx
which we already control (see Gadget 0-1).

; library: mshtml.dll
; offset: 0x0042E9D9
; type: CS-R

1 pop edi
2 pop esi
3 mov esp, ebp
4 pop ebp
5 retn 20h

Gadget 2-1: (Phase 2, Gadget 1). Point esp to the sprayed
buffer.

; library: mshtml.dll
; offset: 0x004A73E3
; type: CS-R

1 retn 14h

Gadget 2- 2: (Phase 2, Gadget 2). Further increase esp by
0x18 (6 dwords).

; library: ieframe.dll
; offset: 0x001ADCC2
; type: CS-F-R

1 push eax ; destination
2 call memcpy
3 add esp, 0Ch
4 xor eax, eax
5 jmp short loc_7672DCE7
6 pop ebx
7 pop edi
8 pop esi
9 pop ebp

10 retn 8

Gadget 3-1: (Phase 3, Gadget 1). Gadget for calling of
memcpy for copying the shellcode to existing program code.

; library: ieframe.dll
; offset: 0x0006FBAE
; type: CS-F-R

1 and dword ptr [ebp-0Ch], 0
2 lea eax, [ebp-0Ch]
3 push eax ; address to save old protection
4 push 40h ; new protection
5 push ebx ; size
6 mov ebx, [ebp-8]
7 push ebx ; address
8 call ds:VirtualProtect
9 test eax, eax
10 jz loc_766E9531 ; if eax==0: goto error handler
11 mov eax, [ebp+8]
12 and dword ptr [edi+4], 0
13 mov [edi+8], eax
14 mov [edi+10h], esi
15 mov [edi+0Ch], ebx
16 mov eax, [ebp-0Ch]
17 mov [edi+14h], eax
18 mov eax, dword_768E2CCC
19 mov [edi], eax
20 mov dword_768E2CCC, edi
21 xor eax, eax
22 pop edi
23 pop ebx
24 pop esi
25 leave ; == mov esp, ebp and pop ebp
26 retn 14h

Gadget 3- 2: (Phase 3, Gadget 2). Gadget for calling
VirtualProtect and making existing program code writable.

	I Introduction
	II Control-Flow Integrity
	II-A Ideal CFI
	II-B Practical CFI
	II-C Weaknesses

	III Code-reuse Attacks Under CFI
	III-A Traditional Code-reuse Attacks
	III-B Gadgets in CFI
	III-C Locating the Gadgets
	III-D Calling Functions
	III-D1 Through Indirect Calls
	III-D2 Calling through Gadgets

	III-E Linking Gadgets
	III-F From Code-reuse to Code-injection

	IV Proof-of-Concept Exploitation
	IV-A Gadget Locations in CCFIR
	IV-B Exploitation Requirements
	IV-C Memory Disclosure
	IV-D Gadget chaining

	V Evaluation
	VI Discussion
	VI-A Other Vulnerable Defenses
	VI-B Possible Defenses

	VII Related Work
	VII-A Advanced Mitigation Techniques
	VII-B CFI Research

	VIII Conclusion
	References
	Appendix
	A PoC Exploit Gadgets

