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Abstract—The ability to update firmware is a feature that is
found in nearly all modern embedded systems. We demonstrate
how this feature can be exploited to allow attackers to inject ma-
licious firmware modifications into vulnerable embedded devices.
We discuss techniques for exploiting such vulnerable functionality
and the implementation of a proof of concept printer malware
capable of network reconnaissance, data exfiltration and propa-
gation to general purpose computers and other embedded device
types. We present a case study of the HP-RFU (Remote Firmware
Update) LaserJet printer firmware modification vulnerability,
which allows arbitrary injection of malware into the printer’s
firmware via standard printed documents. We show vulnerable
population data gathered by continuously tracking all publicly
accessible printers discovered through an exhaustive scan of
IPv4 space. To show that firmware update signing is not the
panacea of embedded defense, we present an analysis of known
vulnerabilities found in third-party libraries in 373 LaserJet
firmware images. Prior research has shown that the design flaws
and vulnerabilities presented in this paper are found in other
modern embedded systems. Thus, the exploitation techniques
presented in this paper can be generalized to compromise other
embedded systems.

Keywords-Embedded system exploitation; Firmware modifica-
tion attack; Embedded system rootkit; HP-RFU vulnerability.

I. INTRODUCTION

Modern embedded devices exist in large numbers within our
global IT environments and critical communication infrastruc-
tures. Embedded systems like routers, switches and firewalls
constitute the majority of our global network substrate. Special
purpose appliances like printers, wireless access points and IP
phones are now commonplace in the modern home and office.
These appliances are typically built with general purpose,
real-time operating systems using stock components. They
are capable of interacting with general purpose computers as
general purpose computers themselves.

The diverse and proprietary nature of embedded device
hardware and firmware is thought to create a deterrent against
effective wide-spread exploitation. While such claims of em-
bedded security fundamentally reduce to security through ob-
scurity, it is nonetheless claimed by embedded device vendors
to provide security for their products [1].

To demonstrate that such claims of embedded security are
overly optimistic and that emerging embedded exploitation
techniques and embedded system malware pose a threat to the

security of our existing networks, we present the following
four contributions:

General firmware modification attack description: We
present firmware modification attacks, a general strategy that
is well-suited to the exploitation of embedded devices. This
strategy aims to make arbitrary, persistent changes to victim
devices’ firmware by leveraging design flaws commonly found
within embedded software. Firmware modification attacks
can affect entire families of devices adhering to the same
system design flaw, transcending operating system versions
and instruction set architectures. The HP-RFU vulnerability
presented in this paper affects MIPS- and ARM-based printers
alike, regardless of their underlying software implementation.
We discuss the general preconditions for and the process
of leveraging firmware modification attacks against modern
embedded devices.

HP LaserJet firmware modification case study: We use
a firmware modification vulnerability recently discovered by
the authors in nearly all HP LaserJet printers [2] to present
a real-world case study of the development cycle of such
attacks against common embedded devices. We present the
threat model characterization, vulnerability analysis and threat
assessment of HP-RFU and show a full exploit against the
vulnerability. The entire process, from discovery to the im-
plementation of the final attack and malware package, took
approximately two months, was carried out using public ven-
dor information readily available on the Internet and required
a hardware budget of under $2,000. This attack is effective
against the majority of LaserJet printers currently in produc-
tion and affects a large number of installed devices. While it
is difficult to divine the actual size of the vulnerable device
population, HP shipped 11.9 million such units in a single
quarter of 2010 alone [3].

The design flaws identified in the HP remote firmware
update functionality can be seen in other modern embedded
systems. Thus, the attack strategy we present can be general-
ized and applied to other vulnerable embedded device types.
We discuss the offensive potential of our proof of concept
printer malware and its impact on the efficacy of traditional
network defense doctrine.

Vulnerable population / patch propagation analysis: The
severity of the HP-RFU attack is further increased due to the



ubiquitous nature of the vulnerable population. While firmware
fixes have been released by the vendor, mitigation of the vul-
nerability discussed in this paper ultimately depends on end-
users diligently updating firmware. Applying firmware updates
on mission-critical embedded systems can be cumbersome and
daunting [4]. It is not surprising that we have found that this
diligence is lacking, which favors the attacker.

We present the results of exhaustive scans of IPv4 to show
the distribution of all publicly accessible, vulnerable LaserJet
printers on the Internet. We have identified over 90,000 unique
vulnerable printers inside numerous government organizations,
educational institutions and other sensitive environments. We
periodically fingerprint the specific firmware version of each
tracked device in order to analyze the rate and pattern of
firmware patching throughout the world. We believe this
data will shed light on the inefficacy of the patch cycle
for large populations of embedded devices as compared to
patch propagation patterns within general purpose computer
populations. Firmware patch propagation data for the first
two months following the official release of firmware updates
for 53 printer models [5] is presented in this paper. Initial
data indicates a global patch level of approximately 1.08%.
Furthermore, 24.8% of all patched printers still had open telnet
interfaces with no root password configured (a default setting).

Vulnerable third-party library analysis: Mandatory firm-
ware update signature verification was introduced by the
vendor on some vulnerable LaserJet printer models following
the disclosure of the HP-RFU vulnerability. This mitigates
the specific vulnerability discovered by the authors. However,
mandatory firmware signature verification allows known vul-
nerable code to be signed and verified. It does not remove the
actual vulnerabilities within the signed firmware, nor will it
detect or mitigate the exploitation of the actual vulnerability.

We present the results of automated analysis of a large
collection of LaserJet printer firmwares released over the last
decade, including the latest firmwares released in response to
the HP-RFU disclosure. We analyzed all publicly available
firmware images for 63 models of HP LaserJet printers.
By cross-referencing the specific version numbers of third-
party libraries like OpenSSL and zlib found within firmware
updates with known vulnerabilities for those specific library
versions, we conclude that a large number of vendor-issued
firmwares are released with multiple known vulnerabilities. In
some cases, we identified recently released firmware updates
containing vulnerabilities in third-party libraries that have been
known for over eight years. We identified third-party libraries
with known vulnerabilities in 80.4% of all firmware images
analyzed.

The remainder of this paper is organized as follows: Sec-
tion II describes the general firmware modification attack
strategy and surveys such existing attacks against embedded
devices. Section III discusses the discovery of the HP-RFU
vulnerability and the subsequent proof of concept attack and
malware development. Section IV discuss the real-world offen-
sive potential of our proof of concept attack. The distribution

of publicly accessible vulnerable LaserJet printers and initial
firmware patch propagation telemetry is presented in Sec-
tion V. Vulnerable third-party library analysis of 373 vendor-
issued firmware updates is presented in Section VI. We survey
related works and ongoing work in the area of host-based
embedded defense and vulnerability analysis in Section VII.
Lastly, we propose recommendations for hardening embedded
devices against attacks described in this paper in Section VIII
and present our concluding remarks in Section IX.

II. FIRMWARE MODIFICATION ATTACK

Firmware modification attacks aim to inject malware into
the target embedded device. Predictions of firmware modifi-
cation attacks against printers are almost a decade old [6].
Firmware modification attacks can be carried out either as
standalone attacks or as secondary attacks following initial
exploitation using traditional attack vectors.

Standalone firmware modification attacks manipulate firm-
ware update features instead of exploiting flaws in the victim
software. For example, the firmware modification case study
presented in Section III utilizes the remote firmware update
feature within HP LaserJet printers. This attack vector is not
unique to the vulnerable devices discussed in this paper. Other
ubiquitous embedded systems like ATM machines, smart
battery controllers, keyboards, enterprise routers and PBX
equipment are also vulnerable to such attacks. Similar stan-
dalone firmware modification attacks [7]–[12] have recently
been reported.

The standalone firmware modification strategy is well-suited
to embedded exploitation in general for the following reasons:

Feasibility: Firmware update is an ubiquitous feature found
in modern embedded devices. Previous work [7], [13], [14]
shows that a large number of embedded devices have firmware
update features that are not sufficiently protected by proper
user authentication. Many devices that require authentication
before allowing firmware updates are vulnerable to trivial
administrative interface bypass attacks [15]. Furthermore, net-
booted embedded devices that use insecure protocols like
TFTP to retrieve their configurations and firmware are vul-
nerable to standard OSI Layer 2 attacks.

Fail-Safe: Firmware update mechanisms usually mandate
integrity and model verification prior to execution of the
actual firmware modification. Malicious firmware update pack-
ages sent to incompatible embedded devices are rejected
and ignored. This relaxes the reconnaissance and accuracy
requirements for the attacker and reduces the penalty of a
misdirected attack. For example, the final malicious binary
described in Section III contains a single RFU image targeting
a precise printer model. However, if the exact model of the
victim printer is unknown, multiple malicious RFU commands
covering all potential printer models can be sent sequentially
without damaging the printer. Furthermore, each RFU com-
mand need not contain a full printer OS image, which is at
least several megabytes in size. A bare-bones OS boot loader
can be sent instead. Such a loader will be at most be several



hundred kilobytes in size (the development of this offensive
technique is outside the scope of this paper).

Platform Independence: Attacks that manipulate firmware
update features within the vulnerable device do not need to
depend on specific software vulnerabilities in the victim and
will generally work across many models of the same device,
even across different machine architectures. For example, the
HP-RFU vulnerability manipulates a feature of the LaserJet
firmware, which is supported across nearly all printer models
and is common among MIPS- and ARM-based devices.

While mandatory firmware signature verification can mit-
igate standalone firmware modification attacks, this counter-
measure is not the panacea of embedded security. Firmware
modification attacks can be carried out as a secondary payload
following the successful exploitation of the embedded de-
vice via traditional vectors like memory modification attacks.
Firmware content is typically stored in rewritable, nonvolatile
memory like flash. Embedded operating systems generally
lack the fine-grain privilege separation and execution isolation
found in modern operating systems; even when available in
later builds, vendors oftentimes choose to not utilize these
memory isolation features. Furthermore, for embedded oper-
ating systems with process and memory isolation, vulnerabil-
ities within the kernel or privileged processes can still allow
an attacker to make persistent changes to the device. For
example, prior research has demonstrated that it is possible
to make persistent modifications to the boot ROM portion of
enterprise routers using only software operations [16]. Thus,
countermeasures like authentication and firmware signature
verification cannot fully prevent firmware modification attacks
on embedded systems with vulnerable attack surfaces.

Section III illustrates the development cycle of a typical
firmware modification attack and embedded malware. Sec-
tion VI presents vulnerable third-party library analysis for a
large corpus of HP LaserJet firmware images.

III. CASE STUDY: HP LASERJET EXPLOITATION

The HP-RFU firmware modification vulnerability [2] was
discovered unintentionally when the authors attempted to
inject host-based defenses into network printers. The HP
LaserJet family was chosen because of its popularity and
commanding market share [3]. The LaserJet P2055DN model
was chosen as our initial target device.

Analysis of the HP LaserJet firmware revealed a reliably
exploitable design flaw that allows remote attackers to make
persistent modifications to the printer’s firmware by printing
to it.

In order to inject host-based defenses into any target hard-
ware, the original firmware must be unpacked and analyzed.
In the case of prior work on Cisco IOS routers, this process
was straightforward1. However, unpacking and analyzing HP
LaserJet firmware images presented several challenges. Fig-
ure 8 of the Appendix shows the hex dump of a RFU file.

1IOS images are simple ZIP files with slightly non-standard headers.

The remote firmware update for the P2055DN printer begins
with standard PJL (Printer Job Language) but enters into an
undocumented language called ACL. Approximately 7 MB
of binary data follows. Initial static analysis2 revealed no
recognizable filesystem headers and no function preambles for
any known machine architecture inside the RFU binary.

Without further analysis, a key design flaw became appar-
ent: the firmware modification mechanism is coupled with the
printing subsystem, which must accept incoming requests in
an unauthenticated manner as per general specification. As
confirmed by vendor documentation [17], the RFU file is
printed to the target device via the raw-print protocol over
standard channels like TCP/9100, LPD and USB. Various
other vendors also use the same update strategy.

When a print job is received by the printer’s job-parsing
subsystem, a proprietary mechanism is used to determine
the presence of a valid firmware update package. If a PJL
command containing a valid RFU package is present, the
integrity of the RFU payload is verified and decompressed.
The payload’s unpacked binary data is then written to persis-
tent storage within the target printer, thereby modifying the
printer’s firmware.

Once the RFU binary structure was obtained through stan-
dard hardware and software reverse engineering methods, we
discovered that it was possible to pack arbitrary executable
code back into a legitimate RFU package in a PJL com-
mand. This command can then be embedded into a malicious
document or sent directly to the victim printer to arbitrarily
and persistently modify its firmware. Such an attack does
not affect the printing of the legitimate carrier document
and only makes the printer unavailable for approximately 90
seconds. The printer will continue to respond to network
requests throughout most of the firmware update process.
Thus, the attack will likely go completely unnoticed by users
and network monitoring systems.

Fig. 1. Byte value distribution histogram of a typical RFU file. Distribution
suggests that the data is compressed and not encrypted.

2We used standard industry practices of loading the image into IDA Pro,
fixing the memory mapping, and so forth. A detailed discussion of reverse
engineering is outside the scope of this paper.



A. Discovery Process

Initial static analysis of the original RFU binary revealed
no printable strings, no known filesystem headers nor rec-
ognizable executable binaries. We concluded that the binary
payload was likely either encrypted or compressed. Figure 1
shows the byte distribution histogram for a typical RFU binary
payload for the P2055DN printer. The histogram suggests that
the binary blob is compressed and not encrypted as common
encryption algorithms typically generate high-entropy cipher-
text, which was not observed.

Manual inspection of the binary revealed a simple package
header structure containing a short checksum field followed
by multiple entries of the same data structure, containing
the compressed and uncompressed size of each firmware
component as well as its target address within the printer’s
persistent storage address space. This header is shown in
Figure 9 of the Appendix.

Fig. 2. Formatter board for LaserJet P2055DN. Dump of the onboard SPI
flash revealed RFU format and integrity checking algorithm.

The printer’s formatter board hardware components were
desoldered and reverse engineered. Figure 2 shows the actual
formatter board inside the target device. Figure 3 illustrates the
main components found on the P2055DN’s primary control
(formatter) board. Manual inspection revealed that the system
was powered by a Marvell SoC. Aside from the machine
architecture (ARM), no other information was publicly avail-
able due to the proprietary nature of the chip. However, the
SPI flash chip is a stock component with a publicly available
datasheet.

The main SoC on the formatter board uses the Spansion
flash chip as a boot device. This chip has 8 MB of storage
and communicates with the main Marvell SoC via a Serial
Peripheral Interface (SPI) using a simple command protocol
defined in its datasheet. In order to extract the contents of
the flash chip, a SPI chip dumper was implemented using an
Arduino [18] to perform the actual I/O. Figure 4 shows the
physical hardware setup connecting the SPI boot flash chip to
the Arduino board.

Analysis of the boot loader code revealed the binary struc-
ture and compression algorithm used in the RFU format.
Manual inspection of the flash chip content revealed a boot
image layout shown in Figure 5.
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ARM SoC
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Fig. 3. Logical block diagram of the major components used on the LaserJet
P2055DN formatter board. The Spansion boot flash was key to our reverse
engineering effort.

A factory reset RFU image was found inside the boot
flash. This image is immediately preceded by a boot loader
containing the code that validates and parses RFU images. IDA
Pro [19] disassembled the boot loader binary. The resulting
assembly code revealed that the RFU image is validated using
a trivial checksum function and compressed using a common
algorithm.

Fig. 4. The SPI flash chip was physically removed then connected to an
Arduino for boot code extraction.

Furthermore, the specific version of the compression library
used to process RFU images appear to have several known
arbitrary code execution vulnerabilities [20]–[22]. Section VI
presents an analysis of vulnerable third-party libraries found
in a large number of firmware images released by the vendor.

B. Proof of Concept Printer Malware

Static analysis of the extracted boot flash code revealed
the precise RFU binary structure, checksum and compression
algorithms used. This information allowed the authors to write
HPacker, a tool that takes an uncompressed ARM ELF image
as input and returns a valid compressed PJL update command
as output.

The malicious PJL command can be printed directly to the
target printer or embedded within various document formats
(an example is included in Figure 10 of the Appendix). Either
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Fig. 5. Boot image layout on the SPI flash chip. The level-1 boot loader
contains code that validates, unpacks and decompresses the factory reset RFU
allowing us to reverse engineer the binary RFU format and compression
algorithm.

way, once the PJL command is sent to the victim printer, it
will recognize the print job as containing a valid firmware
update and allow the attacker to make arbitrary modifications
to the victim’s firmware storage area.

The unpacked RFU package for the P2055DN contains over
a dozen files. The main file of interest is the binary OS image,
a single 14 MB ELF image containing the VxWorks operating
system and various other vendor-specific additions.

The creation of the proof of concept malware essentially
reduced to creating a VxWorks rootkit capable of:

• Command and control via covert channel
• Print job snooping and exfiltration
• Autonomous and remote-controlled reconnaissance
• Multiple device type infection and propagation to the

Windows operating system and other embedded devices
• Reverse IP tunnel to penetrate perimeter firewalls
• Self-destruction
A video discussing the technical mechanics of this rootkit

and a demonstration of its capabilities is publicly available
[23].

The VxWorks OS image found within the RFU binary
contains a complete socket library [24] and direct access to
the underlying network transceiver hardware. The creation
of the proof of concept code was mainly an exercise in
identifying and intercepting the proper pieces of binary within
the VxWorks image.

No host-based security mechanism exists within the firm-
ware image. Thus, the attacker is free to make arbitrary
changes to the victim device. As long as the functionality and
general performance of the device is not altered, detection of
firmware modification is not possible without careful removal
and inspection of the hardware inside the printer.

Several challenges arose during the construction of the proof
of concept code. The VxWorks image extracted from the
RFU package contained no symbol information. Locating the
appropriate socketlib, print job processing and raw network
I/O binary interfaces within the binary proved non-trivial.

We developed a set of IDA-Python scripts to perform
standard control-flow analysis of the target binary around
code that we manually identified as network-facing. This
effort was expedited by a patch made to the VxWorks kernel,

which redirected debug messages destined for the UART to
a TCP connection. Using these two mechanisms, a dynamic
analysis environment was created to probe network-facing
code, which eventually yielded a small set of functions likely
to be libraries used by multiple pieces of unrelated code.
Function prototype data was taken from available VxWorks
documentation and used as a final check to positively identify
each library function.

Typically, the malware would be optimized, compressed,
packed and broken up to fit within gaps inside the original
firmware or placed within dynamically allocated memory.
However, since the attacker controls the firmware storage area
absolutely, we added a new section within the ELF header
marked with rwx privileges. This gave us more than sufficient
space to implement all the previously mentioned malware
functionality. In total, 2,800 lines of assembly were written
to create the proof of concept malware.

IV. THREAT MODEL AND ASSESSMENT

We present the threat model and assessment analysis for the
HP-RFU vulnerability presented in Section III.

A. Threat Model Characterization

The HP-RFU vulnerability exploits a design flaw in the
firmware update mechanism found in nearly all LaserJet
printers. In order to achieve persistent firmware modification
on the victim device, the attacker must deliver a malicious
PJL command to the raw-printing processing subsystem of the
target. This can be done by using the following attack types:

Active Attacks require the attacker to directly trigger the
firmware update process by actively connecting to the printer
and sending it the malicious PJL command over the printer’s
raw-printing port.

Reflexive Attacks are akin to reflexive cross-site scripting
attacks where malicious firmware update commands are em-
bedded in passive data that is passed along to the user of the
victim device. For example, the final binary package of the
HP-RFU attack can be embedded inside innocuous-looking
documents and sent to unwitting users, perhaps in the form of
an academic paper or resume. In this reflexive attack scenario,
the actual attack is launched when the malicious document is
printed.

B. Threat Assessment

Figure 6 illustrates an advanced persistent attack scenario
where a compromised printer is used as a reconnaissance tool
and offensive asset. Once the malware package is delivered
to the victim printer, it can be used to carry out firmware
modification attacks against other embedded devices like other
printers, IP phones and video conferencing units. Compro-
mised embedded devices can be used to establish reverse IP
tunnels back out to the Internet, giving the attacker direct
access to the secured internal network. These devices can also
be used to carry out standard network attacks like ARP cache
poisoning and act as offensive assets to further compromise



general purpose computers and other embedded devices behind
the victim’s perimeter defenses.

Firewall

Network Printer

Attacker

Server

1. Reverse Proxy

Printer -> Attacker

2. Reverse Proxy

Printer -> Victim

3. Attacker -> Server 

Via Reverse Proxy

4. Win: Reverse Shell

Server -> Kitteh

Fig. 6. Typical advanced persistent threat attack scenario involving compro-
mised printers.

No host-based security mechanisms exist on the compro-
mised printer. Thus, the presence of malware on this device
will most likely go undetected if the functionality of the
device is not affected. The compromised printer is an ideally
situated stealthy asset that can be used as a fail-safe device
allowing the attacker re-entrance into the victim network even
if all compromised general purpose machines are neutralized.
Contrary to the sensationalized media coverage regarding the
HP-RFU vulnerability, it would be unwise for the attacker to
destroy a compromised printer physically3.

The HP-RFU vulnerability disclosure is described in CVE-
2011-4161 [25]. As Section V shows, there are currently over
90,000 vulnerable LaserJet printers publicly accessible over
the IPv4 Internet.

C. Compounding Factors
The following factors compound the severity of the HP-RFU

vulnerability:

No authentication prior to firmware update: The PJL/RFU
mechanism is coupled with the raw-printing protocol, a clear-
text protocol that does not support authentication. Any party
who is allowed to use the victim printer can carry out a
firmware modification attack against the printer. Therefore,
the attacker does not need to have direct IP connectivity to
the victim printer even in the active attack scenario because
the malicious payload can be relayed by intermediate print
servers.

RFU feature enabled by default: The majority of the
firmwares we analyzed enable the remote RFU update feature

3While it has been demonstrated and stated in the initial reports that using
the printer’s fuser as an ignition source to create fire is not possible, physical
destruction of the printer is possible via multiple methods.

by default. Network-printing typically requires the printer to
be reachable via TCP/9100. Since arbitrary binary traffic is
allowed in the raw-printing protocol by specification, it is diffi-
cult to detect and stop malicious PJL commands at the network
layer. Recent research suggests that it may be possible to use
languages like PostScript to compute a valid, malicious PJL
command on the victim printer when the malicious document
is processed [11]. If so, this will significantly increase the
difficulty of detection of this type of attack on the network
level or within print servers.

Poor and incomplete configuration interface: The configu-
ration interface of many “advanced” security features does not
exist on the printer’s HTTP or Telnet administrative interfaces.
For example, disabling the remote RFU feature and setting
PJL passwords can only be done through a separate enterprise
printing management tool called HP Web Jetadmin (WJA)
[26]. This is a 315 MB program that requires the installation
of Windows-based web and SQL servers and is generally not
practical for average users without enterprise IT support.

RFU feature cannot be disabled: Several LaserJet models,
including the P2055DN used in our initial experimentation, do
not support any way to disable the remote RFU feature, even
through Web Jetadmin. As far as the authors are aware, prior
to the release of the second version of the security bulletin
[27], no combination of available configurable settings could
disable the vulnerable feature on these printers. Furthermore,
these models were not included in the first release of the
security bulletin [28], since security bulletins released by the
vendor must contain an acceptable mitigation method. Since
no firmware fix was available, the devices most affected by
the HP-RFU vulnerability were not listed in the initial vendor
disclosure document.

Potential for irreversible, permanent malware injection:
The SPI boot flash chip used on the P2055DN formatter board
supports a One-Time-Programmable (OTP) feature [29] that
allows areas of memory within the chip to be programmed and
locked permanently. This is an irreversible operation that is
typical for similar flash components. If the malicious malware
package injected into the boot flash chip of the printer took
advantage of this feature, removal of the malware would
be impossible without physical removal of the compromised
component.

V. VULNERABLE DEVICE POPULATION ANALYSIS

Vendors of general purpose operating systems and popular
applications have deployed large-scale distribution networks
to automatically update host software with little to no user
interaction. However, no such widely deployed distribution
exists to push patches and firmware updates to embedded
systems.

The results presented in this section indicate that approx-
imately 1.08% of vulnerable HP LaserJet printers have been
patched worldwide, despite the public announcement of the
HP-RFU vulnerability and the rapid release of firmware up-
dates by the vendor (see Table I).



This highlights the ineffectiveness of simple public release
of firmware updates for vulnerable embedded devices. Em-
pirical evidence suggests that vulnerable embedded devices
will persist for a long period of time as compared to vul-
nerable general purpose computers. The threat will persist
unless proactive firmware update mechanisms are developed
for legacy embedded systems. However, a more proactive
firmware update mechanism may also be exploited in firmware
modification attacks.

A. Methodology

In order to quantify the number of printers that are vulner-
able to the HP-RFU attack, we scanned the IPv4 Internet for
publicly accessible HP printer web, telnet, SNMP and raw-
print server sockets. Model numbers and firmware datecodes
were gathered by employing the following methods:

• “@PJL INFO ID” command over TCP/9100
• “@PJL INFO CONFIG” command over TCP/9100
• “@PJL INFO PRODINFO” command over TCP/9100
• SNMP GET using “public” as the community string
• Model-specific banner scraping over TCP/23,80

B. Findings

In the two months following the official release of firmware
updates for the HP-RFU vulnerability, we identified 90,847
unique HP printers that are publicly accessible over the IPv4
Internet. Firmware version data is collected periodically for
each device. Table I shows our findings.

Potentially vulnerable printers 90,847
Printers with identifiable
firmware datecode 74,770
Number of patched printers 808
Overall patch rate 1.08%

TABLE I
OBSERVED POPULATION OF PRINTERS VULNERABLE TO THE HP-RFU

ATTACK ON IPV4.

Patching vulnerable printers to the latest firmware does
not necessarily secure the printer. We probed each printer
for other well-known vulnerabilities and common miscon-
figurations that can result in unrestricted root-level access
to the printer. Table II lists the vulnerabilities, including a
ChaiVM vulnerability FX exploited in 2003 [30] (this talk
also discussed the potential for firmware modification).

Vulnerable printers are grouped into five general organiza-
tional types: educational, private enterprise, military, civilian
government and Internet service providers. Tables III and IV
show the distributions of the average age of the firmware
images currently installed across different organization types
and continents, respectively. The firmware age is taken from
the datecode in the response from the devices’ administrative
interfaces. Organizational and geographic data were gathered
though the DNS, Internet Routing Registry (IRR) whois or
commercial geolocation databases.

Unrestricted Telnet 50,500
Unrestricted ChaiVM4 27,570
Vulnerable Virata EmWeb5 2,740

TABLE II
OBSERVED POPULATION OF PRINTERS VULNERABLE TO ATTACKS OTHER

THAN HP-RFU ON IPV4.

Avg Age Oldest
Count (years) Firmware

Education 48,626 4.13 1993-08-20
ISP 4,650 3.70 1994-10-12
Enterprise 2,842 4.02 1992-12-16
Military 201 4.63 1999-10-30
Government 126 4.33 1996-12-20

TABLE III
ORGANIZATIONAL DISTRIBUTION OF VULNERABLE PRINTERS.

The above data is a lower bound on the number of vulner-
able LaserJet printers on the Internet since it does not include
devices behind firewalls or NATs or in other private networks..

In the months following the HP-RFU vulnerability disclo-
sure, we observed 808 unique vulnerable printers that have
been updated to firmware versions that mitigate the problem.
We also observed 211 printers that did not require updated
firmware to be invulnerable to the HP-RFU. However, out of
these 1,019 devices, 24.8% (253) of them still have open telnet
interfaces with no root passwords configured.

Approximately 64% of all vulnerable printers were located
in North America. Over 65% of all vulnerable printers were
found within the networks of educational institutions world-
wide.

We also identified the following populations of vulnerable
printers within two notable organizations:

• United States Department of Defense: 201 printers
• Hewlett-Packard: 6 printers

VI. VULNERABLE THIRD-PARTY LIBRARIES

Mandatory firmware signature verification was introduced
by the vendor [5] in response to the disclosure of the HP-
RFU vulnerability. While this effectively mitigates the specific
attack presented in Section III, we believe this response is
inadequate for at least two reasons:

Signed firmware 6= secure firmware: Firmware signature
verification guarantees that the binary data to be processed at
firmware update time originated from a trusted source within
the vendor’s organization. Vulnerable code that is signed by
the vendor remains vulnerable to exploitation. This mechanism
does not prevent firmware or memory modification attacks in
general and thus contributes little to the overall security of the
embedded device.

Signed firmware prevents independent third-party defense
development: Mandatory signature verification that only ac-
cepts firmware updates signed by the vendor will categorically

4The ChaiVM EZLoader allows unsigned .jar files to be installed [31].
5A remote crash vulnerability exists in Virata EmWeb R6.0.1 [32].



Avg Age Oldest
Count (years) Firmware

N. America 47,840 4.46 1992-12-16
Europe 14,196 4.16 1993-08-20
Asia 10,353 3.77 1998-09-02
Oceania 1,081 4.79 1998-09-02
S. America 673 3.43 1999-01-27
Africa 60 4.56 2001-04-26

TABLE IV
GEOGRAPHICAL DISTRIBUTION OF VULNERABLE PRINTERS.

prevent all non-vendor issued code from running. This makes
the injection of legitimate third-party host-based defenses into
vulnerable firmware images impossible.

In order to show that firmware signing as the sole security
mechanism is inadequate, we present the results of the auto-
mated analysis of the third-party library vulnerabilities in a set
of 373 firmware update packages issued by the vendor over
the last decade. The dataset includes 358 RFUs released prior
to the disclosure of HP-RFU as well as 15 RFUs released as
part of SSRT100692 rev.3. The printer models and firmware
images analyzed are listed in Table VII of the Appendix.

A. Methodology

All RFU images were unpacked and decompressed. Em-
bedded filesystems (LynxFS) were extracted from the decom-
pressed data. Extracted executables and shared objects were
pattern-matched against known ASCII and binary signatures
to detect the presence of specific versions of two specific third-
party libraries: zlib and OpenSSL.

While this process suggests the presence of specific versions
of third-party libraries in the analyzed firmware updates, no
analysis was performed to check whether the libraries can
be invoked by the attacker, or that the known vulnerabilities
are reliably exploitable on the printers’ machine architectures.
This is the topic of ongoing research.

We present findings for the following third-party library
vulnerabilities found in 373 vendor-issued firmware updates:

zlib: CA-2002-07, CERT-{68062, 238678} Discovered in
2002, zlib ver. 1.1.3 and earlier have a double free bug that
allows arbitrary code execution [20]. In 2005 the vendor was
notified of a buffer overflow in zlib ver. 1.2.1 and 1.2.2 [21].
The vendor was notified of a DOS condition in zlib ver. 1.2.0.x
and 1.2.x in 2004 [22].

OpenSSL: CVE-{2009-3245, 2006-3738, 2006-4339} There
are over 100 known vulnerabilities in various versions of
OpenSSL. We scanned for the above three critical vulnera-
bilities in our firmware update dataset because they involve
features that are likely to be reachable via network attack. The
first two vulnerabilities can lead to arbitrary code execution.
The last vulnerability can bypass x.509 certificate verification.

B. Findings

Figure 7 shows the percentage of vendor released firmware
images that uses versions of zlib and OpenSSL library con-
taining known vulnerabilities for a subset of LaserJet models.

Fig. 7. Percentages of RFUs for each printer model containing known zlib
and OpenSSL vulnerabilities.

Model Lib Earliest RFU Latest RFU

2055 ssl Unknown Unknown
zlib 2009-04-30 Present

4005 ssl 2010-02-11 Present
zlib 2009-06-05 Present

4250 ssl 2004-09-02 Present
zlib 2004-09-02 Present

4700 ssl 2009-09-14 Present
zlib 2009-06-05 Present

9050 ssl 2004-06-30 Present
zlib 2004-06-30 Present

TABLE V
LIFESPAN OF VULNERABILITIES IN THIRD-PARTY LIBRARIES USED BY

LASERJET FIRMWARE.

Table V shows the duration of which known vulnerabilities
have existed for in various models of LaserJet printers.
Overall, we made the following observations:

Printer models analyzed 63
RFU images analyzed 373
All RFUs w/ at least 1 vulnerability 300
Latest RFUs w/ at least 1 vulnerability 41 (65.1%)
Most common zlib version 1.1.4
Most common OpenSSL version 0.9.7b

TABLE VI
THIRD-PARTY LIBRARY VULNERABILITY ANALYSIS OBSERVATIONS.

Mandatory firmware update signature verification is not
an adequate defense mechanism against vulnerabilities that
exist in the codebase of existing printers. Therefore, a large
population of network printers is still potentially vulnerable
to exploitation, despite the firmware updates released by the
vendor.

VII. RELATED WORK

This section surveys recent firmware modification attacks
as well as host-based defense technologies that can be applied
to mitigate firmware modification attacks against embedded
systems and concludes with a brief discussion of firmware
analysis and its tools.



A. Recent Firmware Modification Attacks

Firmware modification attacks against the telecommuni-
cation infrastructure [10], [16], SCADA and PLC systems
[33], laptop battery controllers, network interface cards, au-
tomated teller machines, medical devices and a wide range
of other critical embedded systems have been demonstrated.
For example, in the so-called Athens Affair, Ericsson AXE
mobile phone base station controllers were altered to have their
lawful intercept code surreptitiously activated in the Vodafone
network in Greece [34].

PsycoB0t, the first publicly known router botnet, modified
the firmware of approximately 85,000 DD-WRT home routers
to include an IRC-based bot controller that was used briefly
to carry out denial of service attacks before mysteriously
disappearing [35]. Barnaby Jack controlled ATMs and drained
them of their cash by replacing firmware in specific models
[9]. Miller demonstrated Mac laptop battery controller firm-
ware modification [8]. Costin demonstrated several PostScript-
based attacks against Lexmark printers capable of memory
inspection and possibly arbitrary modification [11]. Finally,
Fu’s body of work on medical device security, including
realized attacks against an implantable cardioverter debrillator
[36] and an automated external defibrillator [7], has shown the
consequences of the exploitation of embedded devices.

B. Embedded System Defense Technologies

Numerous rootkit and malware detection and mitigation
mechanisms have been proposed for general purpose comput-
ers and operating systems (virtualization-based [37], binary
analysis [38], function hook monitoring [39], etc). These
strategies may perform well within general purpose comput-
ers and well-known operating systems, but they have not
been adapted to operate within the unique characteristics and
constraints of embedded device firmware (limited storage,
memory and processing; absence of memory management
units; real-time operating systems; etc). Effective prevention of
binary exploitation of embedded devices requires a rethinking
of detection strategies and deployment vehicles.

Rinard posits that security vulnerabilities are excess, un-
wanted features in a software system [40]. This comes about
through overly general (bloated) software, feature accretion,
subsystem reuse and development errors on the part of design-
ers and implementors and vulnerability insertion on the part
of attackers. Several remedies are outlined including feature
replacement or excision, input rectification and dynamic mod-
ification, and techniques for allocating memory and handling
loops and typical failure conditions are discussed.

DynamoRIO [41] originated from a collaboration between
HP, who created Dynamo, and MIT, who created RIO.
DynamoRIO is a runtime code manipulation system that
supports code transformations on any part of program. An
application launched by DynamoRIO can be analyzed and
manipulated through its API. DynamoRIO is designed for
general purpose operating systems like Windows and Linux
on the x86 architecture.

Much work has been done in using remote software attes-
tation as a defense against firmware modification. SWATT:
Software-Based Attestation for Embedded Devices, proposed
by Seshadri et al. [42], and SBAP: Software-Based Attesta-
tion for Peripherals, proposed by Li et al. [43], involve the
external validation of embedded devices through the use of a
challenge-response protocol. In fact, VIPER, proposed by Li
et al. [44], can be directly applied to mitigate a real-world
firmware modification attack against keyboards [12]. While
promising, such defense mechanisms are generally stop-the-
world algorithms, requiring a full halt of the system while
remote attestation is in progress. While perhaps adequate for
printers, it would be difficult to directly apply such techniques
to embedded devices like routers and firewalls, which must
deliver uninterrupted availability.

Guards, originally proposed by Chang and Atallah [45],
are simple pieces of code that are injected into the protected
software using binary rewriting techniques. Once injected, a
guard can perform tamper-resistance functionality like self-
checksumming and software repair.

C. Further Firmware Analysis and Useful Tools

The vulnerable third-party library analysis presented in
Section VI is likely symptomatic of a larger phenomenon.
We believe that rigorous analysis of the code and data of
proprietary embedded systems will yield important insights
into the exploitability of such devices. The HP-RFU case
study presented in this paper revealed several obstacles that
impeded vulnerability analysis on legacy embedded systems.
While the process of reverse engineering proprietary firmware
image formats is a necessary prerequisite to useful analysis, it
is a time-consuming and energy-intensive exercise that must
be repeated for each new embedded device type. The following
open source tools greatly streamlined our firmware format
reverse engineering process.

Binwalk [46] is a pattern-matching tool designed to search
for known headers and structures in arbitrary binary data.
It is particularly useful for identifying known executable
headers, detecting the ISA of potentially executable data by
identifying known function prolog and epilog patterns and
recognizing compressed data by locating headers of well-
known algorithms.

FRAK [47], the Firmware Reverse Analysis Konsole, is a
recently released open source framework designed to modu-
larize and automate the firmware unpacking, analysis, modifi-
cation and repacking processes. It has been particularly useful
in automating large-scale analysis of firmware collections and
identifying structures within firmware images of unknown
formats.

VIII. RECOMMENDED DEFENSES

We discuss two host-based defense techniques developed
by the authors to mitigate the vulnerabilities described in this
paper. The vulnerable firmware update feature found in HP
LaserJet printers is rarely used and should be disabled until
it is needed. However, we found that disabling this feature



was not trivial and at times impossible, as was the case
with the LaserJet P2055DN. We propose a technique, which
we call Autotomic7 Binary Structure Randomization (ABSR),
which not only disables unnecessary features, but also removes
the unused binary from the firmware image. This technique
simultaneously reduces the attack surface of the embedded
device as well as the amount of code and data that can be
used as part of any shellcode.

Disabling unused features on the embedded device is
helpful, but does not guard against exploitation via attack
vectors within necessary features that cannot be removed. For
example, vulnerable third-party libraries like ones identified in
Section VI may be pivotal to the functionality of the embedded
device. We believe techniques like ABSR should be used
in conjunction with other host-based defenses to detect and
mitigate the consequences of successful exploitation. Software
Symbiotes have been demonstrated as a viable dynamic firm-
ware integrity attestation technique on embedded systems such
as enterprise routers.

Despite proper software and security engineering practices
by vendors, firmwares will continue to be released with
bugs and vulnerabilities. ABSR and Symbiotes are aimed at
securing devices that run such firmware.

A. Autotomic Binary Structure Randomization (ABSR)

ABSR is a fortification technique currently being developed
by the authors. This approach accepts arbitrary executables or
firmware images as input and outputs a hardened, functionally
equivalent variant of the original. The exploitability of the
input binary is reduced by two primary operations: autotomic
binary reduction and binary structure randomization. First,
unused code, as determined by the particular configuration
state of the target device, is autotomically removed in order
to reduce the potential vulnerable attack surface of the overall
system. For example, if a network printer is not configured to
support LDAP authentication and UPnP, code sections corre-
sponding to these feature sets are programmatically stripped
from the resulting binary.

Furthermore, the autotomic operation can remove the bi-
naries of features that are enabled by default but can not be
disabled via configuration, which was precisely the case of
the HP-RFU vulnerability. The RFU firmware update feature
is rarely used but is enabled by default on all systems, some of
which had no method of administratively disabling this code
path; ABSR would remove the binary executables associated
with the feature. Using the free space generated by the
autotomic reduction phase, the binary structure randomization
phase restructures the remaining executable binary blobs. We
propose disabling and removing all unused features in general.
However, the firmware update feature is a special case in
which the code path should be disabled but not removed
from the binary since this feature is necessary for future
firmware updates. In this case, we propose an alternative

7Autotomy - The spontaneous casting off of parts is a (biologically) viable
security mechanism.

method of enabling this code path, potentially through an
ABSR configuration interface.

This approach differs from most existing techniques in that
no attempt is made to remap coherent blocks of code into
randomized locations in memory. Instead, ABSR decomposes
all remaining basic blocks of the binary in order to transform
them into a randomized, functionally equivalent program while
intentionally breaking control-flow isomorphism.

Like software Guards and Symbiotes, ABSR is not a stop-
the-world defense mechanism. ABSR does not halt the original
functionality of the protected device while it is engaged.
Like other randomization techniques such as Address Space
Layout Randomization (ASLR) and Instruction-Set Random-
ization (ISR), ABSR is built into the architectural design of
the protected device and does not require dynamic patching
or binary rewriting like DynamoRIO. ABSR is an topic of
ongoing research.

B. Software Symbiotes

Software Symbiotes [48] are a host-based defense mecha-
nism that are specifically designed to inject intrusion detection
functionality into the binary firmware of existing embedded
devices. A Symbiote is a code structure embedded in situ into
the firmware of an embedded system. The Symbiote tightly
co-exists with its host executable in a mutually defensive
arrangement, sharing computational resources with its host
while simultaneously protecting the host against exploitation
and unauthorized modification. The Symbiote is stealthily
embedded in a randomized fashion within an arbitrary body of
firmware to protect itself from removal and unauthorized deac-
tivation. Unlike remote software attestation techniques, Guards
and Symbiotes do not require the disabling of interrupts or a
full system halt while the security mechanisms are engaged.

IX. CONCLUSION

We presented a general discussion of firmware modifica-
tion attacks against embedded systems as well as a specific
case study of such a vulnerability found in nearly all HP
LaserJet printers. We discussed the analysis process that led
to the discovery of the HP-RFU vulnerability as well as
the implementation of a proof of concept printer malware.
The printer malware presented in this paper can be delivered
through standard PJL commands and can be embedded in
innocuous document formats such as PostScript. It is capa-
ble of stealthy network reconnaissance, data exfiltration and
propagation by autonomously compromising general purpose
computers and other embedded device types. The HP-RFU
vulnerability exploits a fundamental design flaw found not
only in nearly all LaserJet printers, but in other modern
embedded systems as well. Thus, the process presented in this
paper can be generalized and applied to the exploitation of
similarly vulnerable embedded systems.

We presented the results of exhaustive scans of IPv4 to track
the size and distribution of all publicly accessible vulnerable
LaserJet printers over time. Out of over 90,000 vulnerable
units, only 1.08% of the vulnerable population has been



patched since the release of firmware updates in response to
the disclosure of HP-RFU. Furthermore, 24.8% of all patched
printers are configured to have open telnet interfaces with
no root password. In other words, we only identified 766
printers out of over 90,000 units that are simultaneously not
vulnerable to the HP-RFU attack and have properly configured
root passwords.

Firmware update signing can mitigate the HP-RFU vulner-
ability. However, it should not be used as the sole security
mechanism on embedded systems. We presented the results
of the analysis of all available firmwares for 63 HP LaserJet
printer models that identify third-party libraries with known
vulnerabilities within the signed codebase. We identified vul-
nerable third-party libraries in 80.4% of all firmware images
analyzed. Furthermore, we identified libraries containing vul-
nerabilities that have been known for over eight years in
several of the most recently released firmware images.

The scientific evidence, quantitative analysis and the proof
of concept HP-RFU vulnerability exploitation presented in
this paper demonstrate the importance of introducing effective
host-based defense into vulnerable embedded devices.
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APPENDIX

Fig. 8. Hex dump of a typical HP-RFU. For P2055DN, using the undocu-
mented PJL/ACL language.

Fig. 9. “UAT” table structure. Contains a checksum value, followed by a
directory manifest describing various compressed components of the binary
update package.

Fig. 10. RFU binary embedded inside a typical PostScript file. This illustrates
the most straightforward reflexive attack.

Model RFUs (qty.) Earliest RFU Latest RFU
2300 2 2004-05-12 2004-12-03
2400 4 2004-09-02 2009-06-24
3000 2 2004-01-06 2008-04-09
3500 3 2004-01-19 2007-02-20
3550 2 2004-09-22 2005-03-07
3600 2 2006-08-07 2006-08-28
3700 3 2004-03-31 2006-12-06
3800 1 2008-04-08 2008-04-08
4100 2 2004-10-08 2005-12-21
4200 2 2004-10-07 2005-06-02
4250 9 2004-09-02 2011-04-06
4300 2 2004-10-07 2005-06-02
4345 10 2005-01-25 2011-04-29
4600 2 2004-10-12 2006-10-10
4650 3 2004-08-27 2007-04-19
4700 7 2009-06-05 2011-05-11
4730 8 2009-06-04 2011-04-29
5100 1 2004-01-15 2004-01-15
5200 9 2009-06-04 2011-12-14
5500 3 2004-10-07 2005-06-02
5550 10 2004-07-29 2011-04-06
8000 1 2010-10-28 2010-10-28
8150 2 2004-01-14 2004-10-14
8500 6 2010-10-25 2011-06-29
9000 3 2004-08-09 2005-12-21
9050 21 2004-06-30 2011-12-13
9055 1 2008-02-20 2008-02-20
9065 5 2004-09-10 2008-02-20
9200 8 2005-01-25 2011-04-19
9250 10 2009-06-04 2011-12-19
9500 12 2004-10-24 2011-05-24
CM1312 5 2010-06-16 2011-12-09
CM1415 6 2010-07-21 2011-12-15
CM3530 9 2009-06-04 2011-12-13
CM4730 11 2009-06-04 2011-12-12
CM6040 8 2009-09-09 2011-12-12
CM80 5 2008-10-28 2010-08-05
CP1518 3 2010-06-16 2011-12-10
CP1525 6 2010-07-21 2011-12-15
CP2024 3 2010-05-12 2011-12-08
CP3505 8 2009-06-04 2011-04-06
CP3525 10 2008-12-04 2011-12-12
CP4005 6 2009-06-05 2011-05-11
CP4525 7 2010-01-20 2011-12-13
CP5225 5 2011-12-20 2011-12-20
CP6015 9 2009-06-04 2011-12-12
M1522 2 2011-03-19 2011-12-12
M1536 5 2010-07-21 2011-12-15
M2727 3 2010-09-02 2011-12-12
M3035 17 2009-06-05 2011-12-12
M4345 15 2009-06-05 2011-12-12
M5035 15 2009-06-05 2011-12-12
M9050 9 2009-06-05 2011-12-12
P2035 4 2011-03-30 2011-12-13
P2055 9 2009-04-30 2011-12-14
P3005 9 2009-06-15 2011-04-06
P3015 8 2009-09-10 2011-12-13
P4015 10 2009-06-04 2011-12-14
Pro 100 1 2011-10-21 2011-10-21
T1200 2 2010-08-31 2011-07-06
T2300 2 2010-08-31 2010-10-28
T7100 4 2011-09-06 2011-11-05
Z6200 1 2011-11-05 2011-11-05

TABLE VII
PRINTER MODELS AND FIRMWARE IMAGES ANALYZED FOR VULNERABLE

LIBRARIES.


