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Abstract—Software development using type-unsafe lan-
guages (e.g., C and C++) is a challenging task for sev-
eral reasons, security being one of the most important.
Ensuring that a piece of code is bug or vulnerability
free is one of the most critical aspects of software en-
gineering. While most software development life cycle
processes address security early on in the requirement
analysis phase and refine it during testing, it is not always
sufficient. Therefore the use of commercial security tools
has been widely adopted by the software industry to
help identify vulnerabilities, but they often have a high
false-positive rate and have limited effectiveness. In this
paper we present MINESTRONE, a novel architecture
that integrates static analysis, dynamic confinement, and
code diversification to identify, mitigate, and contain a
broad class of software vulnerabilities in Software Of
Uncertain Provenance (SOUP). MINESTRONE has been
tested against an extensive test suite and showed promising
results. MINESTRONE showed an improvement of 34.6%
over the state-of-the art for memory corruption bugs that
are commonly exploited.

I. INTRODUCTION

Shipping bug or vulnerability free software is a ma-
jor concern for software engineering teams. Therefore
efforts have been made to address security concerns
early on and make it part of the software develop-
ment life cycle [1]. While this reduces the number of
bugs, it is not sufficient and software vulnerabilities
are still growing [2]. The software industry relies on
various products [3], [4] to detect vulnerabilities early
on in type-unsafe languages such as C and C++. These
products employ static analysis, which produces a large
number of false positives that must be individually
resolved by a domain expert, a time consuming process.

MINESTRONE [5] is a novel architecture that ad-
dresses software vulnerabilities for C/C++ languages
by combining static and dynamic analysis, confinement,
and code diversification. MINESTRONE is part of the
IARPA STONESOUP program [6], addressing vulner-
abilities in Software Of Uncertain Provenance (SOUP).
The goal of STONESOUP (Securely Taking On New
Executable Software Of Uncertain Provenance) is to de-
velop “comprehensive, automated techniques that allow
end users to securely execute software without basing
risk mitigations on characteristics of provenance”. In re-
ality, given today’s software development practices, the
notion of provenance is indeterminate: it is impossible to

know who developed a piece of software, where, and/or
how. For example, companies outsource and offshore
product development, and products incorporate open
source components that might have been developed
by any number of people in any number of locations.
Instead, the STONESOUP program seeks to establish
confidence in software based on the properties of the
software itself, by examining it directly, independent of
its provenance.

Existing vulnerability analysis tools address the
problem of whether or not a piece of software is safe
to run by examining it directly, but current tools –
primarily based on static analysis – are difficult to use
without significant expertise and produce a great deal
of output, including a significant proportion of false
positives. Furthermore, prior to the creation of STONE-
SOUP, the NSA conducted a study of the state-of-the-art
tools in source code analysis and found that each tool
incurred a high percentage of false negatives [7]. For
these reasons, the STONESOUP program seeks to de-
tect and mitigate vulnerabilities in software via defense
in depth, a combination of complementary techniques,
with the goal that software can be first analyzed and then
executed safely, contained and possibly transformed via
diversification, by non-experts.

MINESTRONE is versatile architecture that incor-
porates a number of component technologies using a
combination of analysis, confinement, and diversifica-
tion approaches. MINESTRONE leverages confinement
to mitigate potential vulnerabilities and can be deployed
to transparently protect running applications using dy-
namic security instrumentation [8]. In this paper, we
present our results and experiences conducting an eval-
uation of the MINESTRONE system and component
technologies using a test suite of programs containing
memory error (e.g., buffer overflow) and null pointer
vulnerabilities developed by an independent test and
evaluation team within the STONESOUP program.

The remainder of the paper is organized as follows.
First, we present related work. Next, we detail our
methodology and experimental setup in which we test
MINESTRONE against a test suite containing memory
error and null pointer vulnerabilities. Then we present
the results of our experimentation with these test suites.
Finally, we share our lessons learned and conclusions.



II. RELATED WORK

There are a number of existing commercial tools for
finding vulnerabilities in source code. In 2009, the NSA
conducted a comparison of some of these tools [7] in
order to evaluate the capabilities of the state of the art,
in terms of both the breadth and depth of coverage. The
tools evaluated in that study for finding vulnerabilities
in C/C++ code were Coverity Prevent, Fortify SCA,
GrammaTech CodeSonar, Klocwork Insight, and Ounce
Labs Ounce. The study found that 41.5% of the test
cases containing vulnerabilities could not be identified
by any of the tools. Another interesting finding was
that there was relatively little overlap in terms of tools’
vulnerability detection capabilities; only 7.2% of the
vulnerabilities were caught by all five tools and 12.1%
were caught by only one (varying) tool. In other words,
each tool found mostly different vulnerabilities from the
others, so in order to get the best detection coverage one
would need to use as many of the tools as possible.

MINESTRONE is an architecture that enables the
combination of multiple detection technologies into a
single, integrated system, in part via I/O redirection
technology. I/O redirection and replay frameworks have
been used previously in the context of benchmarking
and debugging. One notable effort in this space is
Jockey [9], which intercepts calls to non-deterministic
system calls and CPU instructions, logs the behavior
in a recording phase, and replays it from a log file
during the replay phase. However, Jockey does not
support deterministic replay of a distributed system. I/O
profiler and I/O traces replayer [10] work in user space
and use library interposition in order to trace system
calls. However, like most record/replay approaches, it
records all libc function calls and attempts to replay
them exactly as recorded, breaking many programs’
execution. Unlike other replay frameworks that do not
execute function calls but read effects/values from a
recorded log file, R2 [11] focuses on replaying function
calls and their side effects. It allows developers to select
functions that can be recorded and replayed correctly.
However, it requires developers to instrument their code
and annotate the chosen functions with keywords to
generate replay code stubs.

Our approach, detailed in IV-2, combines two tech-
nologies: the first performs fine-grained recording using
library interposition and the second streams the recorded
data across the network and synchronizes the replay
for multiple program replicas. This approach allows
specific high-level operations to be interposed and is
more flexible (i.e., allowing for different read/buffer
sizes during playback). Our approach is also more
lightweight, only interposing on those function calls
related to I/O with which we are concerned.

III. HYPOTHESIS AND METHODOLOGY

In this research, our hypothesis is that we can
build an architecture combining multiple vulnerability

detection and containment technologies to outperform a
single, state-of-the-art technology in terms of both true
positive and false positive detection rates.

Our methodology involves the construction of the
MINESTRONE architecture comprising a variety of
vulnerability detection and mitigation technologies, and
subsequent experimental testing of the MINESTRONE
prototype using a test suite of programs containing
vulnerabilities. The MINESTRONE architecture and
components will be described in detail in the next
section. In the remainder of this section we describe
the test infrastructure and corpus.

In order to test the effectiveness of MINESTRONE
in detecting and containing vulnerabilities, we have
utilized a test infrastructure and test cases developed by
an independent test and evaluation team in the context
of the IARPA STONESOUP program [6]. The inde-
pendent test and evaluation team, MITRE, created a test
infrastructure that includes a test manager for deploying
test cases to multiple hosts, where a test harness runs
each test case and collects the results. MITRE also
developed a suite of test programs - relatively small,
engineered test cases containing memory errors (e.g.,
buffer overflows/underflows) and null pointer vulnera-
bilities. For each weakness class, there are multiple test
case programs, and for each test case program there are
multiple good and bad inputs known as I/O pairs. The
bad inputs enable testing of whether the MINESTRONE
system and its individual component technologies ren-
der the vulnerability in the test case unexploitable (true
positive rate). The good inputs enable testing that the
MINESTRONE system and components do not alter the
original functionality of the test program (false positive
rate). A test case, made up of I/O pairs, is considered
to be successfully handled by the test harness if all the
good I/O pairs result in the correct state (be it files
created, return codes, etc.) and all of the bad I/O pairs
are reported as containing a vulnerability.

The test suite developed by the independent test and
evaluation team contained 226 memory error test cases
and 114 null pointer test cases. Each of these test cases
is made up of 4 to 10 combined good and bad I/O
pairs. A total of 546 distinct I/O pairs were created,
each of which may be used in multiple test cases. The
first step of our methodology is to define a reference
value, the base case. To that end, we run the test
cases with good inputs and without any MINESTRONE
detection technology, and we observe the output of the
test program. Next, we run the same test case with bad
inputs and again without any detection technology; we
observe the output of the test program and its return
status code (e.g., 139 for a program that segmentation
faults). This first step in our methodology is a sanity
check to establish the ground truth correctness of the
test suite with no instrumentation.

The next step in our methodology is to execute each
test case and their associated inputs within the MINE-



STRONE system architecture. For each test case, we
collect the detection results from each MINESTRONE
component as well as the final result returned by the
overall MINESTRONE system. We also collect resource
utilization information associated with each component
technology for comparison purposes. The information
collected and the infrastructure that we built for data
collection within the MINESTRONE system architec-
ture will be described in detail in the next section.

Finally, the last step in our methodology is to
process and verify the results. We will provide these
details in Section V on Experimental Results.

IV. EXPERIMENTAL SETUP

The high-level MINESTRONE architecture is de-
picted in Figure 1. The SOUP, i.e.,“unknown” software
to be tested, ideally program source code, is initially
processed by the composer. (Some MINESTRONE
components can operate on Linux ELF binaries.) The
program is then dispatched and deployed in multiple
virtual execution environments (VEEs) leveraging OS-
level virtualization for processing with multiple detec-
tion technologies. Each of the VEEs receive the same
input, using an I/O redirection component that replicates
the same inputs to each respective copy of the program.
Diversification occurs in each of the selected VEEs.
Finally, the composer analyzes the output of each VEE
and provides a vulnerability report to the user. In our
experimental setup, the vulnerability report is passed to
the test manager for evaluation.

Software Of 
Unknown 

Provenance 
(SOUP) MINESTRONE

System
Composer

"Canonical"
VEE

KLEE
VEE

theRing VEE 
(DFT, DYBOC, 

ISR, REASSURE)

Other VEE(s)
(e.g., Valgrind 

for comparison)

Fig. 1. MINESTRONE architecture and workflow

1) Detection Components: In this section we present
the core components that comprise MINESTRONE.
The detection technology components are key to the
vulnerability detection capabilities.

KLEE [12] is a symbolic virtual machine built on
top of the LLVM compiler [13] infrastructure.

DYBOC [14] is a source-to-source transformation
tool that augments the source code to detect stack and
heap-based buffer overflow and underflow attacks.

REASSURE is an error recovery mechanism that
allows the software to recover from unforeseen errors

or vulnerabilities [15], [16]. It reuses existing code
locations that handle certain anticipated errors for unan-
ticipated ones as well.

Data flow tracking (DFT), or taint tracking, is
provided via a high-performance data tracking library,
libdft [17]. DFT enables the detection of attacks based
upon bad inputs, such as those that exploit memory
handling errors.

Instruction Set Randomization (ISR) [18] is a de-
tection technology and diversification mechanism that
mitigates code injection attacks by diversifying the
instruction set used by a program under test at runtime.
The attacker’s injected code, relying on gadgets or
the native instruction set, will not match the current,
transformed instruction set being used and thus fail.

theRing is a customized tool that combines DYBOC,
REASSURE, DFT, and ISR into a single execution run-
time. It was developed to reduce the overhead required
by running separate VEEs for each technology.

2) I/O Redirection: Our framework relies on I/O
redirection to provide the same input to all the test
programs that are running in isolated containers (VEEs).
In order to achieve this we use two complimentary
techniques. The first technique utilizes a purpose-built
I/O record component to capture all the (pertinent) I/O
in a non-diversified “canonical” VEE, and replay it
in the VEEs built with MINESTRONE technologies.
The record and playback is provided using library
interposition to intercept libc function calls that provide
input and output operations (e.g., read, send, etc.).

The library interposer that we have built writes
output to a file for later playback. The second technique
that we employ allows this output to be streamed live to
each of the other VEEs (Klee, theRing, and Valgrind in
Figure 1), enabling concurrent execution, using the DUP
system [19], a language system for distributed stream
processing. After specifying the stream graph, DUP
handles the execution of each of the technologies and
streams the results back to the MINESTRONE frame-
work to decide which output is “correct”. In Figure 1,
the system composer is made up of the test harness
and DUP, which controls the execution of the canonical
VEE to record I/O, then executes the diversified VEEs,
and finally merges the output.

3) Mitigation and Confinement: MINESTRONE
builds upon OpenVZ [20] to provide the VEE for
each program replica. We also leverage a copy-on-write
file system that allows us to discard any unwanted
changes due to a vulnerable program. The VEE not
only enables confinement but also addresses a specific
class of vulnerability known as resource exhaustion [21]
by monitoring the VEE behavior from the host. We
have the ability to monitor resource utilization to ensure
that a program is not using more resources than a
given threshold that could be a sign of exploitation, bad
programming (e.g., infinite loop) or, in the case of a web



server, a Denial-of-Service attack. We developed a tool
as part of the MINESTONE framework that executes
the test cases in the VEEs, while monitoring and rate
limiting three main types of real-time resources in the
OpenVZ containers:

CPU usage: we can monitor both user and system
CPU consumption as a percentage of total available and
as an absolute number of cycles.

Memory usage: we can monitor fine-grained mem-
ory consumption of virtual and physical pages allocated.

Network: we can monitor the real-time network
traffic that is going to and from the container.

4) Experimental Environment: During the MINE-
STRONE test and evaluation process, only a single
test harness is allowed, meaning only a single “result”
can be returned to be evaluated. In our experimental
environment we are under no such constraints, so we
have chosen to break out each of the individual tech-
nologies to determine their standalone detection rates.
This allows us to also precisely monitor the time it takes
to execute each test case and the comparable resources
that are required for each of the technologies. We also
collected results on all of the components together to get
an overall score. Finally, prior to the test and evaluation,
MITRE performed a state-of-the-art analysis using the
same test cases. One of the better performing runtime
analysis tools that they used for their evaluation was
Valgrind [22]; we provide our results using Valgrind as
a rough comparison of MINESTRONE technologies to
the state of the art.

Our MINESTRONE environment was run on a cus-
tom OpenVZ kernel 32-bit CentOS 5 virtual machine
(VM) running on a VMware ESX server. The VM was
allocated 8GB of memory with 8 CPU cores. For the
standalone test results, each technology was allowed to
execute in isolation (no other tests running on the VEE).

V. EXPERIMENTAL RESULTS

In performing our evaluation of MINESTRONE
using the MITRE test corpus, we ran over 24,000 test
cases in 10 different VEEs over approximately one
month. In brief, our results show that utilizing MINE-
STRONE improves detection of memory errors over the
state of the art, with a similar resource consumption rate
for most components. The one exception is the KLEE
component, which uses significantly more resources
than the other technologies, with mixed results.

The terms (metrics used by the independent test and
evaluation team) in Table I, are defined as:

Processed: A test case is processed when the build
with instrumentation was successful in producing an
executable binary.

Unaltered Functionality: The test program with in-
strumentation and good inputs had the expected output.

Rendered Unexploitable: The test program with
instrumentation and bad inputs had a vulnerability that
has been mitigated by the technology.

Raw Score: The percentage of test cases for which
a technology correctly rendered unexploitable all bad
I/O pairs and had unaltered functionality for good I/O
pairs, out of all processed and unprocessed test cases.

Processed Score: The percentage of test cases for
which a technology correctly rendered unexploitable
all bad I/O pairs and had unaltered functionality for
good I/O pairs, out of all processed test cases.

Unaltered Score: The percentage of test cases for
which a technology correctly rendered unexploitable
all bad I/O pairs and had unaltered functionality for
good I/O pairs, out of all unaltered functionality test
cases. This is the final score that is used for evaluation.

Table I shows the scoring results from the mem-
ory corruption test cases for each of the component
MINESTRONE technologies. The highest level result is
that our combined MINESTRONE methodology allows
us to improve detection over the state of the art by
34.6% (comparing the Combined/Unaltered Score with
Valgrind/Unaltered score). Importantly, this result is not
due to any single mitigation technology outperforming
Valgrind, but due to different technologies detecting
different memory errors.

In terms of maintaining the functionality of the
executable, KLEE and DYBOC are the worst offenders
(altering 168 and 98 test cases, respectively). For KLEE,
this is due in part to an inability to model memory
allocated by libraries outside the main executable. DY-
BOC fails to properly transform 51 test cases, due to
an implementation limit of 65536 total variables, which
for undiscovered reasons simply changes the output in
the rest of the cases. There are 22 test cases that are
altered for all technologies; these test cases relied on a
DNS server that was not provided by MITRE.

KLEE provides the highest percentage of correct
results, but only for the 53 unaltered functionality test
cases. DFT and REASSURE provide the worst detection
rates, but also do not alter functionality significantly.

For sake of brevity, we only summarize the scoring
results for the null pointer vulnerability test cases. The
takeaway from these results is that null pointer errors
are relatively easily detected. With the exception of
KLEE and DFT, all technologies (including Valgrind)
detect a high percentage (greater than 99%) of these
errors. Combining all the MINESTRONE technologies
provides only a single additional error detected (112
vs. 111), and improves on altered functionality in only
two test cases (113 vs. 111). It should be noted that
KLEE fails to correctly execute any of these test cases
due to library incompatibility. Also, taint tracking is not
designed to find null pointer errors, so it’s not surprising
that DFT detects none of these errors.

Table II compares resource consumption (CPU, peak
memory usage and runtime) between the technologies



KLEE DFT ISR REASSURE DYBOC theRing Combined Valgrind

# Processed 97.69% 98.23% 98.67% 100% 100% 100% 100% 100%
(221/226) (222/226) (223/226) (226/226) (226/226) (226/226) (226/226) (226/226)

# Unaltered 23.98% 90.0% 86.55% 90.27% 56.64% 84.96% 90.27% 88.50%
(53/221) (200/222) (193/223) (204/226) (128/226) (192/226) (204/226) (200/226)

Raw Score 22.12% 4.87% 37.61% 4.87% 45.58% 45.58% 63.72% 47.35%
(50/226) (11/226) (85/226) (11/226) (103/226) (103/226) (144/226) (107/226)

Processed Score 22.62% 4.95% 38.12% 4.87% 45.58% 45.58% 63.72% 47.35%
(50/221) (11/222) (85/223) (11/226) (103/226) (103/226) (144/226) (107/226)

Unaltered Score 94.34% 5.5% 44.04% 5.50% 80.47% 53.65% 70.59% 53.50%
(50/53) (11/200) (85/193) (11/200) (103/128) (103/192) (144/204) (107/200)

TABLE I. SUMMARY OF SCORING RESULTS ON THE 226 MEMORY CORRUPTION TEST CASES.

KLEE DFT ISR REASSURE DYBOC theRing Valgrind

Avg. User CPU 25086.07 2461.68 3198.04 1946.90 978.61 4032.69 1092.83
Jiffies σ 62181.82 σ 899.76 σ 868.80 σ 1164.51 σ 420.42 σ 1420.39 σ 1034.03

Avg. System CPU 414.55 364.51 667.76 403.65 201.93 723.12 86.46
Jiffies σ 604.78 σ 129.08 σ 190.06 σ 315.23 σ 92.66 σ 244.34 σ 28.18

Avg. Phys. Mem. 146.99 MiB 36.90 MiB 35.70 MiB 39.87 MiB 30.31 MiB 39.38 MiB 41.65 MiB
σ 71.52 σ 5.32 σ 5.36 σ 19.70 σ 8.21 σ 5.42 σ 7.52

Average Runtime 25.59s 4.59s 6.72s 5.49s 3.87s 6.39s 3.7
σ 62.36 σ 5.47 σ 13.52 σ 13.82 σ 13.52 σ 7.41 σ 8.14

TABLE II. SUMMARY OF CPU AND MEMORY USAGE FOR MEMORY CORRUPTION TEST CASES.

for the memory corruption test cases. We computed
the average usage across all the test cases that were
successfully processed, and present the average and
the standard deviation. Most of the technologies use
approximately the same amount of resources, with the
clear exception of KLEE. KLEE uses between 6 and 10
times the user CPU than any of the other technologies.
KLEE also runs longer on average, and consumes more
memory. DYBOC is the least resource intensive, using
less CPU and memory on average than the other MINE-
STRONE technologies, and is on par with Valgrind
in runtime and CPU. Compared to Valgrind, DYBOC
utilizes more than twice the system CPU. This is due
to the increase in memory allocations and deallocations
that take place as a result of moving stack resources to
the heap. Note that the standard deviation given for the
runtime is nearly useless; many of the test cases have a
built in sleep which causes the duration to be inflated,
throwing off the average and standard deviation.

Figure 2 compares the physical memory usage over
time for a single memory corruption test case. In this
case (as is typical, reflected in Table II) we see that
all the technologies other than KLEE have roughly the
same memory profile, to the point that dintinguishing
them is difficult. However, KLEE stands out, peaking
at almost four times the memory consumption of the
other technologies. It should be noted that the test setup
requires around 10 seconds, which is why the test case
execution does not begin until after the 11th second.

A. Extended KLEE Results

While the results thus far indicate that KLEE is
more resource intensive than the other MINESTRONE
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Fig. 2. Graph comparing physical memory usage over time between
the technologies. All the technologies other than KLEE use a similar
amount of memory; KLEE uses significantly more.

technologies, the situation is worse than a cursory look
at the data indicates. Specifically, we discovered that in
many of the test cases that KLEE altered functionality,
it was due to a timeout - in other words, the test cases
never completed. Each test case in our evaluation was
allowed to execute for 200 seconds, after which the test
case was killed. In our examination of memory usage
data, KLEE increased its memory usage apparently
linearly, exceeding 250MB of physical memory, up
to 150 seconds of execution (at which point KLEE’s
built-in timeout begins, but did not complete prior to
forced test case termination). For reference, the other



technologies lump together in the range of under 50MB
physical memory usage.

We looked into memory consumption on a per test
case basis in order to see if there were clusters of test
cases with similar distinct behavior. We found that most
of the test cases (and most of the technologies) again
use roughly the same amount of memory (under 50MB),
CPU, and time. However, KLEE again stands out in this
regard. We looked at a plot with a single point for the
memory consumption of each technology with each I/O
pair. Again, most of the technologies lump together in
a stable pattern, with the exception of KLEE, which
occasionally shows a large increase (commonly up to
400MB) in memory usage. Also, KLEE’s minimum
memory usage is about 100MB. We saw similar patterns
in CPU usage and runtime (left out for brevity).

B. Extended DYBOC Results

The DYBOC technology relies on multiple compo-
nents to detect a number of memory defects. The first of
these components is a source-to-source transformation
based on TXL [23], a source rewriting language and
set of tools to perform the actual source translation.
DYBOC leverages TXL to transform input source code
in two ways. First, any stack allocated variables are
changed into heap allocated variables. A simple exam-
ple of this is replacing the stack variable buf with a heap
variable (shown below):

char buf[10];
char *buf = malloc(10);

The second transformation is to replace memory allo-
cation/deallocation functions (e.g., malloc, calloc, free)
with versions of these functions that incorporate mem-
ory protections. Specifically, guard pages are placed
above and below the actual memory on memory alloca-
tion, allowing detection of buffer overflows/underflows.

When running the memory corruption test cases
using DYBOC, we noticed a large number of altered
functionality test cases (98/226). Further investigation
led us to discover a fundamental limitation in the
TXL implementation (TXL can handle only 65536
program variables) was causing 51 test cases to not
properly be transformed, and thus fail out of hand.
Our intuition was that using protected versions of
memory allocation/deallocation was more important at
mitigating memory corruption bugs than the stack-to-
heap transformation. As such, we also ran the test cases
using less complex source transformation (only replac-
ing malloc/calloc/free) by leveraging Coccinelle [24].
Coccinelle has the advantage of being a simple-to-
understand transformation language.

Using only Coccinelle allowed us to achieve a much
higher unaltered functionality rate and caught more total
memory corruption errors, but the “unaltered” detection
rate also dropped. Thus, we reasoned that there must be
many memory corruption test cases that were corrupting

stack memory. Since we already determined that there
were possible issues with TXL, we turned to another
source-to-source transformation tool, CIL [25]. We
chose CIL because it comes bundled with a number of
example transforms, and a driver (cilly) to apply those
transforms in place to C code. The built-in transform
we used is called “heapify”, and similar to DYBOC is
intended to move any stack allocated variables to the
heap. After performing the heapify operation, we then
also applied the memory protection source transform
using Coccinelle for the final evaluation.

DYBOC DYBOC DYBOC w/CIL Combined
(Original) (Coccinelle) (Coccinelle)

# Altered 43.36% 9.29% 31.42% 8.41%
(98/226) (21/226) (71/226) (19/226)

Processed 45.58% 47.79% 37.61% 57.08%
Score (103/226) (108/226) (85/226) (129/226)

Unaltered 80.47% 52.68% 54.84% 62.32%
Score (103/128) (108/205) (85/155) (129/207)

TABLE III. SUMMARY OF RESULTS FOR DYBOCS.

Table III details the results of our three different
diversified DYBOC containers. One interesting result
is that the Coccinelle only version of DYBOC has the
highest processed score, and the lowest altered function-
ality. The data shows that while the CIL + Coccinelle
source transformations also achieves a lower altered
functionality rate than the TXL version of DYBOC, it
correctly identifies fewer memory corruption bugs than
the original. The combined results again showcase the
utility of MINESTRONE. While one different DYBOC
version finds fewer bugs than the original, they also find
different bugs. As a result, the detection rate for these
errors while maintaining functionality increased 25.24%
(from 103 to 129).

VI. LESSONS LEARNED

As detailed in the previous section, actually running
all of the test cases for this evaluation took less than a
month. However, the entire test and evaluation process
of the STONESOUP program encompassed more than
a year of test suite development by the independent
evaluation team and two formal week-long test and
evaluation site visits. Suffice it to say, there were a
number of lessons that we learned over the course of
this experimentation and testing. We provide some of
the more valuable takeaways in this section.

1) Symoblic Execution Limitations: Our symbolic
execution engine is KLEE [12]. One of the fundamen-
tal limitations with this type of analysis is that the
state space is broad and the exploration may take too
much time, which is why recent research efforts have
focused on merging states to enhance speed [26]. In
MINESTRONE, to provide a vulnerability assessment
in a timely fashion we use KLEE with concrete input.
The program is run with its input so that only the path
traversed by this input value will be verified. While this



is an effective way to attain results based on specific
input, it suffers from poor code coverage.

Perhaps the biggest limitation of such a tool is that
for it to be applicable to real-world programs, one
must provide a model and behavior for all dependencies
(e.g., libraries), otherwise the tool fails on any memory
allocated outside the tested program. This is a non-
trivial task that requires significant effort and expertise,
making it difficult to use in enterprise environments
where libraries are often selected on a per-project basis.
As noted in Section V, KLEE was able to process
only a small proportion of even the simplistic test cases
provided for the evaluation. This was due to both the
slowdown imposed by KLEE and the use of external
libraries in the test cases.

As an example of our real-world experience with
KLEE, when running GNU grep KLEE imposed a
2700x overhead on the run time, and during the entire
execution duration a single CPU core was pegged at
100% usage. The lesson to take away here is that while
symbolic execution is a powerful technique for source
code (and binary) analysis, it has limitations that keep
it from being possible to use in many cases.

2) Diversification: We used several types of diver-
sification techniques, from switching between compiler
versions, using different compiler optimization levels
and options, altering the OS, and instruction set di-
versification. The main limitation that we encountered
with our software diversification techniques is that the
dependencies (provided as part of the base test harness)
need to be compatible with the diversified environ-
ment. For instance, 32-bit binaries relying on a specific
glibc version were provided to us, which precluded
us from pursuing more aggressive diversification, such
as producing a binary targeting a different architecture
(ARM or any non-x86) because of the dependencies. We
believe the takeaway is that whenever possible, required
dependencies should be built per the end system, and
not distributed as part of the test corpus (if so, they
should be distributed as source).

3) Test Suite: The test suite we used for our ex-
perimentation was provided by MITRE in the IARPA
STONESOUP program [6]. This test suite was devel-
oped by engineers by hand and contained unintended
vulnerabilities that caused “false” positives (which were
actually true) or undesired output, causing valid test
cases to fail.

For example, in certain test cases a stack variable
is declared, and it is assumed to be initialized as all
zeroes. We discovered that depending upon the compiler
used, and the order in which functions are called, the
stack may reuse space for this variable, causing it to be
nonzero. If the variable were declared static then this
code would not cause issues.

Another limitation of the test suite was a lack of
documented ground truth. When we received the source

code for the test cases and I/O pairs, there was not
always a clear indication of what the vulnerability
was and more importantly where it was in the code.
This, coupled with the sometimes unintended bugs and
vulnerabilities, made our determining whether it was the
test case or the technology under test at fault a nearly
impossible task. This is why the final scoring was based
on test cases with unaltered functionality, as the root
cause could not be determined.

The lesson learned here is that for a test suite it
would be better to have vetted test case code, modified
in specific places to inject vulnerabilities. Building an
entire test case from scratch (which may already contain
bugs), and then incorporating vulnerabilities by hand
makes evaluating the final results that much harder.
Also, when releasing a test corpus of code containing
errors, the locations of those errors need be released as
well, so a determination can be made whether a fault is
found in the correct place.

4) I/O Redirection: The subject of using I/O redirec-
tion to save and playback program steps is nothing new;
as detailed in Section II there are many I/O capture/play-
back frameworks. We had initially planned on lever-
aging these existing technologies for MINESTRONE.
However, none of those that we were able to obtain
(including ioapps and Jockey) actually worked out of
the box. Namely, they were difficult to build and once
built never actually worked with any of the test cases
provided to us. For that reason, we decided to create
a simpler, dumbed-down version of our own library
interposer for our purposes. Our I/O redirection has
some limitations, including non-deterministic execution
due to calls to select, which are quite common in
network servers. The I/O in the test corpus provided
to us contains relatively simple test cases, which use
mostly single-threaded applications utilizing network,
file, shared memory, and X I/O. For these specific
cases, our library interposition works well; extending
it to more complex test cases will obviously require
more effort. The lesson learned is that even a well-
researched topic with existing implementations should
not be assumed to solve a problem until it is tried.

5) Our Platform: We tried several enterprise prod-
ucts for vulnerability testing; in general they can be
helpful to developers but often the sheer number of
false positives are overwhelming. Each of these false
positives need to be manually analyzed to determine
whether the checker is being overzealous or there re-
ally is a bug. We have discovered that many of the
single-purpose tools leveraged in the MINESTRONE
framework are very efficient when focusing on a single,
specific type of vulnerability. The lesson that we learned
from building and experimenting with our platform is
that a combination of tailored tools can provide better
detection rates than one single multi-purpose tool. Also,
analyzing binaries at runtime in isolated VEEs both
protects the host system from compromise and generally



does not provide false positives.

VII. CONCLUSION

In this paper we have presented MINESTRONE:
a novel architecture that integrates static analysis, dy-
namic confinement, and code diversification to identify,
mitigate, and contain a broad class of software vulnera-
bilities. We presented our methodology and experiment
focusing on type-unsafe languages. Our results demon-
strated that MINESTRONE is successful in combining
several technologies in order to improve the detection
rate of vulnerabilities while increasing neither the false
positive nor the false negative rate. Our results showed
an improvement of 34.6% over Valgrind, a state-of-the-
art tool, for memory corruption test cases, with similar
resource utilization. We plan to continue extending our
framework to handle different classes of vulnerability
and experiments with other test suites relying on fault
injection framework.
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