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ABSTRACT
IOS firmware diversity, the unintended consequence of a
complex firmware compilation process, has historically made
reliable exploitation of Cisco routers difficult. With approx-
imately 300,000 unique IOS images in existence, a new class
of version-agnostic shellcode is needed in order to make the
large-scale exploitation of Cisco IOS possible. We show
that such attacks are now feasible by demonstrating two
different reliable shellcodes which will operate correctly over
many Cisco hardware platforms and all known IOS versions.
We propose a novel two-phase attack strategy against Cisco
routers and the use of offline analysis of existing IOS im-
ages to defeat IOS firmware diversity. Furthermore, we dis-
cuss a new IOS rootkit which hijacks all interrupt service
routines within the router and its ability to use intercept
and modify process-switched packets just before they are
scheduled for transmission. This ability allows the attacker
to use the payload of innocuous packets, like ICMP, as a
covert command and control channel. The same mechanism
can be used to stealthily exfiltrate data out of the router,
using response packets generated by the router itself as the
vehicle. We present the implementation and quantitative re-
liability measurements by testing both shellcode algorithms
against a large collection of IOS images. As our experi-
mental results show, the techniques proposed in this paper
can reliably inject command and control capabilities into
arbitrary IOS images in a version-agnostic manner. We be-
lieve that the technique presented in this paper overcomes
an important hufdle in the large-scale, reliable rootkit exe-
cution within Cisco IOS. Thus, effective host-based defense
for such routers is imperative for maintaining the integrity
of our global communication infrastructures.

∗Video demos of both IOS shellcodes and our stealthy exfil-
tration module can be found at [7].

1. INTRODUCTION
Over the past decade, Cisco IOS has been shown to be vul-
nerable to the same types of attacks that plague general
purpose computers [13, 11]. Various exploitation techniques
and proof-of-concept rootkits [14, 12] have been proposed.
However, all current offensive techniques are impeded by an
unintended security feature of IOS: diversity. As Felix “FX”
Linder points out, Cisco IOS is not a homogenous collec-
tion of binaries, but a collection of approximately 300,000
diverse firmwares [12]. Although never intended as a de-
fense against exploitation, this diversity makes the creation
of reliable exploits and rootkits difficult.

Known proof-of-concept rootkits operate by patching spe-
cific locations within IOS. In the case of DIK [14], the rootkit
intercepted a specific function responsible for checking pass-
word. The major drawback of this approach is that it re-
lies on a priori knowledge of the location of this function.
As previously noted, this knowledge is generally difficult
to obtain with accuracy prior to attack. Therefore, any
rootkit which depends on specific memory locations cannot
be used reliably in large-scale attacks against the Internet
substrate. Conversely, version-agnostic shellcode, combined
with known vulnerabilities in IOS, makes such large-scale
attacks against Cisco routers a feasible reality.

For reliable, large-scale payload execution in IOS to be fea-
sible, we must construct attacks and shellcodes which are
version and platform agnostic. Towards this end, we outline
a two-stage attack methodology as follows:

Stage 1: Leverage some IOS invariant to compute a host
fingerprint. Using computed information, inject stage-
2 shellcode. Furthermore, exfiltrate host fingerprint
back to attacker.

Stage 2: Persistent rootkit with covert command and con-
trol capability. The attacker will use exfiltrated fin-
gerprint data to construct a version specific rootkit,
which is loaded via the second-stage shellcode.

The attacker is at a disadvantage when attempting an online
attack. However, since all IOS images can be obtained, and
such images are not polymorphically mutated, an attacker
can construct a large collection of version specific rootkits
offline. If the attacker is able to simultaneously inject a
simple rootkit and exfiltrate a host-environment fingerprint
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Figure 1: Timeline of two-stage attack against vul-
nerable IOS router of unknown hardware platform
and firmware version. Attacker launches exploit
with reliable shellcode (1.a). Shellcode installs
rootkit and exfiltrates victim device’s IOS finger-
print (1.b). The attacker finds exact IOS version
from fingerprint by consulting offline database (2.a).
The attacker then creates a version specific rootkit
for victim, and uploads it using 1.b rootkit (2.b).

during the first phase of the attack, the attacker can then
load a rootkit specifically parameterized for the exact IOS
version of the victim router. Figure 1 shows the timeline of
our proposed attack, which is intentionally broken into two
phases to shift the advantage towards the attacker.

The two requirements of our first-stage shellcode, the need to
reliably inject a basic second-stage rootkit, and the need to
accurately fingerprint the victim device, can be satisfied si-
multaneously. Both shellcodes presented in this paper com-
pute a set of critical memory locations within IOS’s .text
section. These memory addresses are used both as intercept
points for our second-stage code, but also used to uniquely
identify the exact micro-version of the victim’s firmware. As
figure 1 shows, this fingerprint data is exfiltrated back to the
attacker and compared to a database of pre-computed finger-
prints for all known IOS firmwares. As Section 8 shows, the
fingerprints can be computed using simple linear-time algo-
rithms and efficiently stored in a database. Pre-computing
such fingerprints for all 300,000 IOS images should not take
more than a few days on a typical desktop.

We present two different techniques for implementing this
two-stage attack. The disassembling shellcode is discussed
in Section 5. A novel interrupt hijack shellcode is discussed
in Section 6. A stealthy exfiltration technique which mod-
ifies process-switched packets just before it is scheduled for
transmission is discussed in Section 7. The intercept hi-
jacking shellcode and the exfiltration mechanism built on
top of it has several interesting advantages over existing
rootkit techniques. First, the command and control pro-
tocol is built into the payload of incoming packets. No spe-
cific protocol is required, as long as the packet is punted to
the router’s control-plane. This allows the attacker to access
the backdoor using a wide gamut of packet types, thus evad-
ing network-based intrusion detection systems. Hiding the
rootkit inside interrupt handlers also allows it to execute for-
ever without violating any watchdog timers. Furthermore,

the CPU overhead of this shellcode will be distributed across
a large number of random IOS processes. Unlike with shell-
codes which take over a specific process, the network ad-
ministrator can not detect unusual CPU spikes within any
particular process using commands like show proc cpu, mak-
ing it very difficult to detect by conventional means.

The remainder of this paper is organized as follows: Section
2 outlines the challenges of reliable IOS rootkit execution
and provides motivation for the need for version-agnostic
shellcodes. Section 3 presents a survey of advancements in
Cisco IOS exploitation over the past decade and provides
a timeline of public disclosures of significant vulnerabilities
and exploitation techniques. Section 4 outlines a general
two-stage attack strategy against unknown Cisco devices.
Section 5 presents our first reliable IOS shellcode, a disas-
sembling shellcode, which was first proposed by Felix Lin-
der for PowerPC based Cisco devices. Section 6 presents
our second reliable IOS shellcode. This shellcode hijacks all
interrupt handler routines within the victim device, and is
faster, stealthier and more reliable than our first shellcode.
Experimental data, performance, overhead and reliability
measurements are presented in Section 8. Potential defenses
against our proposed shellcodes are discussed in Section 9.
Concluding remarks are presented in Section 10. Lastly, the
full source code of both shellcodes are listed in Appendix A.

Please note that the remainder of this paper will focus on
MIPS-based Cisco IOS. All code examples will be shown in
MIPS. However, the techniques presented can be applied to
PowerPC, ARM and even x86-based systems.

2. MOTIVATION
Several recent studies demonstrate that there are vast num-
bers of unsecured, vulnerable embedded devices on the In-
ternet [9], such devices are vulnerable to the same types of
attacks as general purpose computers [3, 11], and can be
systematically exploited in much the same way [1, 3, 5].
For example, various exploitable vulnerabilities [13, 12] and
rootkits [14] have been found and disclosed for Cisco’s flag-
ship system, IOS. Cisco devices running IOS constitutes a
significant portion of our global communication infrastruc-
ture, and are deployed within critical areas of our residential,
commercial, financial, government, military and backbone
networks.

Typical of the embedded security landscape, IOS is an ag-
ing system which does not employee standard protection
schemes found within modern operating systems [14], and
does not have any host-based anti-virus to speak of. In fact,
not only is the installation of third-party anti-virus (which
does not yet exist for IOS) not possible via any published OS
interface, any attempt to do so will also violate the vendor’s
EULA and thus void existing support contracts.

Consider the availability of proof-of-concept exploits and
rootkits, the wide gamut of high-value targets which can be
compromised by the exploitation of devices like routers and
firewalls, and the lack of host-based defenses within close-
source embedded device firmwares. Such conditions should
make the vast numbers of vulnerable embedded devices on
the Internet highly attractive targets. Indeed, we have ob-
served successful attempts to create botnets using Linux-



based home routers [4]. As Section 3 shows, the necessary
techniques of exploiting Cisco IOS and installing root-kits
on running Cisco routers are well understood. However, an
obstacle still stands in the way of reliable large-scale ex-
ploitation of Cisco devices: firmware diversity.

As Felix Linder and others have pointed out [12], there are
over 300,000 unique versions of Cisco IOS. Diverse hard-
ware platforms, overlapping feature-sets, cryptography ex-
port laws, licensing agreements and varying compilation and
build procedures all contribute to create an operating envi-
ronment that is highly diverse. Although unintentional and
not strictly a defense mechanism, this firmware diversity has
made the deployment of reliable attacks and shellcodes dif-
ficult in practice. Therefore, in order for IOS exploitation
to be feasible and practical, reliable shellcode that operate
correctly across large populations of IOS versions is needed.

As Linder demonstrates [12], certain common features within
Cisco routers can be used to improve the chances of reli-
able execution of IOS shellcode. The disassembling shell-
code concept was proposed in the same work. Building off
this insight, we first tested the reliability of the proposed dis-
assembling shellcode. While this technique works smoothly
across all versions of IOS for several major hardware plat-
forms, it failed on all versions of IOS for several popular plat-
forms, including the Cisco 2800 series routers. Furthermore,
its computational complexity frequently triggered watchdog
timer exceptions, which logs a clear trace of the shellcode.
Section 5 discusses the reason for this failure, and several
other drawbacks of this disassembling approach.

Looking to improve reliability and performance, we con-
structed a different shellcode by leveraging a common in-
variant of not only Cisco IOS, but all embedded systems,
interrupt handler routines. Hijacking interrupt handlers is
advantageous for several reasons. First, such routines can
be identified by a single 32-bit instruction, eret, or excep-
tion return. The search for a single eret instruction re-
duces the computational complexity of the first-stage shell-
code. Whereas the disassembling shellcode frequently causes
watchdog timer exceptions on busy routers (See Section 5),
the interrupt-handler hijacking first-stage shellcode executes
quickly enough to avoid such timer exceptions, even on heav-
ily utilized routers. Second, there are approximately two
dozen interrupt handler routines on any IOS image, all of
which are clustered around a common memory range. By
using offline analysis of large numbers of IOS images, we can
safely reduce the memory range searched by the first-stage
shellcode to a small fraction of IOS’s .text section, further
improving the efficiency of the shellcode (See Figures 8 and
9).

As our experimental data shows, the two proposed shell-
codes, along with our proposed data exfiltration mechanism
presented in Section 7, combined with available vulnerabili-
ties of Cisco IOS makes the large-scale of Cisco routers fea-
sible. Weaponizing the techniques presented in this paper
to create worms which target routers is possible, and can
seriously damage the Internet substrate. Therefore, the de-
velopment of advanced host-based defense mechanisms to
mitigate such techniques should now be considered a neces-
sity. Section 9 discusses potential host-based defenses for

Cisco IOS and other similar embedded devices.

3. RELATED WORK
A timeline of significant advancements in offensive technolo-
gies against Cisco IOS is listed below.

FX, 2003: FX analyzes several IOS vulnerabilities and var-
ious exploitation techniques [11].

Lynn, 2005: Lynn described several IOS shellcode and ex-
ploitation techniques, demonstrating VTY binding shell-
code [13].

Lynn, 2005: Cisco and ISS Inc. files injunction against Michael
Lynn [2].

Uppal, 2007: Uppal releases IOS Bind shellcode v1.0 [16].

Davis, 2007: Davis releases IOS FTP server remote exploit
code [10].

Muniz: 2008 Muniz releases DIK (Da IOS rootKit) [14].

Futoransky: 2008 Futoransky presented DIK (Da IOS rootKit)
[17].

FX, 2009: FX demonstrates IOS diversity, demonstrates
reliable disassembling shellcode and reliable execution
methods involving ROMMON [12].

Muniz and Ortega, 2011: Muniz and Ortega releases GDB
support for the Dynamips IOS emulator, and demon-
strates fuzzing attacks against IOS [15].

The techniques presented in this paper extend the above line
of work by introducing novel methods of constructing reli-
able IOS shellcodes and stealthy exfiltration, making large-
scale exploitation feasible across all IOS-based devices.

4. TWO-STAGE ATTACK STRATEGY
Sections 5 and 6 discusses two reliable shellcode techniques.
Unlike existing IOS shellcodes, these two examples are de-
signed to work in a two-phase attack. Figure 1 illustrates
the attack process. In general, this attack first computes a
series of memory locations which the second-stage shellcode
will intercept to obtain minimal rootkit capability. This
series of memory locations is also exfiltrated back to the at-
tacker after the first-stage rootkit finishes execution. Using
this information as a host fingerprint, the attacker queries
a database of pre-computed fingerprints for all known IOS
images to determine the exact micro-version of firmware run-
ning on the victim router. Once this is known, a version spe-
cific rootkit can be constructed automatically, then loaded
onto the victim router via the rootkit installed by the first-
stage shellcode.

Each shellcode computes a different set of features. In the
case of the disassembling shellcode, a 2-tuple is computed;
the address of an invariant string and the address of the
password authentication function. In the case of the inter-
rupt hijacking shellcode, a n-tuple is exfiltrated, containing
a list of memory address for all interrupt handler routines
on the victim device. Section 8 will discuss how accurately
each feature-set can uniquely identify the micro-version of
the victim IOS environment.

5. SHELLCODE #1: DISASM SHELLCODE
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Figure 2: The disassembling shellcode first locates a
known string (A), then locates a xref to this string
(B). Once this xref location is found, the attacker
can patch the function containing the xref. This
shellcode requires two linear scans of IOS memory,
one through the .data section, and a second one
through the .text section.

First proposed by Felix Linder [12] for PowerPC-based routers,
the disassembling shellcode scans the victim router’s mem-
ory twice in order to locate and patch a target function based
on some functional invariant, and works as follows:

A. Find String Addr: Scan through memory, looking for
a specific string pattern. For example, ‘%Bad Secrets’.

B. Find String-Xref: With the string’s memory location
known, construct the instruction which loads this ad-
dress. Rescan through memory, looking for code which
references this string.

C. Patch Function: The data reference is located within
the function we wish to find. Search within this func-
tion for the desired intercept point. For example, the
function entry point, or a specific branch instruction.

Any function which prints a predictable string can be iden-
tified and patched in this manner. A particularly useful
function is the credential verification function, which prints
‘%Bad Secrets’ when the wrong enable password is entered
3 times.

Figure 3 shows the disassembly of this function. We can
bypass password authentication by overwriting a single move
instruction, highlighted in red.

As experimental results in Section 8 shows, this first-stage
shellcode reliably disables password authentication for all
versions of Cisco 7200 and 3600 IOS images tested. However,
it failed for all Cisco 2800 series IOS images.

In general, this type of disassembling shellcode is suitable for
finding direct data references, and will fail to find indirect
references. Indirect references can be identified at the price
of computational complexity. In the case of Cisco routers,
this limit is a very practical one. A watchdog timer con-
stantly monitors every process within IOS, terminating any
process running for longer than several seconds.1 As Figure
11 shows, our implementation of the disassembling shellcode
frequently caused watchdog timer exceptions to be thrown,
leaving clear evidence of the attack in the router’s logs.

1The default watchdog timer value is 2 seconds.

Figure 3: A disassembly of a typical f chkpasswd.
The string xref is the first highlighted block. The
second highlighted block is the single instruction
which can disable password authentication in IOS.
While these addresses vary greatly, they can be re-
liably computed at exploitation time by the disas-
sembling shellcode.

Once the first-stage completes execution, the attacker can
connect to the victim router with level 15 privilege, bypass-
ing authentication. The attacker can then identify the exact
IOS version by a number of methods by using the router’s
administrative interface. While this backdoor gives the at-
tacker persistent control of the device, it is not covert. Sec-
tion 6 shows our interrupt hijack shellcode, which installs an
equivalent backdoor through a covert channel, using pay-
loads of IP packets punted2 to the router’s CPU. In our
demonstration, we use a large collection of arbitrary UDP
and ICMP packets to load complex rootkits into the router’s
memory.

The video demonstration of the disassembling shellcode run-
ning on a Cisco 7204 and 12.4T IOS can be found at [7].

6. SHELLCODE #2: INTERRUPT HIJACKER
As Section 5 showed, the disassembling shellcode can be used
reliably, at least for several major hardware platforms, to lo-
cate and intercept a critical function which handles creden-
tial verification in IOS. However, this shellcode must search
through large portions of the router’s memory twice in or-
der to identify the target string reference, and the target
function. This required computation frequently triggered
the router’s watchdog timer, leaving evidence of the shell-
code in the router’s log. In general, we want to minimize
the amount of computation required by the first-stage shell-
code to evade the watchdog timer, and avoid any perceivable
CPU spike or performance degradation.

6.1 First-stage shellcode
The interrupt hijacking shellcode performs a single scan through
the router’s .text section, locating and intercepting the end
of all interrupt handler routines, and works as follows:

2A packet is punted to a router’s CPU when it cannot be
handled by its linecards, and must be inspected and process
switched.
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Figure 4: The interrupt hijack shellcode first locates
all eret (exception return) instructions within IOS’s
.text section. The second-stage rootkit is then un-
packed inside the $gp memory area (which is unused
by IOS). All eret instructions, and thus all interrupt
service routines are hooked to invoke the second-
stage code. We now have reliable control of the
CPU by intercepting all interrupt handlers of the
victim router.

Unpack second-stage: The second-stage shellcode, which
contains a basic rootkit, is unpacked and copied to
the location pointed to by $gp, the general purpose
register.

Locate ERET instructions: Scan through memory, look-
ing for all [eret] instructions. All such addresses are
stored and exfiltrated for offline fingerprinting (See
Section 7).

Intercept all interrupt handler routines: Hijack all in-
terrupt handler routines by replacing all eret instruc-
tions with the [jr $gp] instruction.

The eret, or exception return instruction takes no operands,
and is represented by the 32-bit value [0x42000018]. As the
name suggests, eret is the last instruction in any interrupt
handler routine, and returns the CPU context back to the
previous state before the interrupt was serviced. Once inter-
cepted, any interrupt serviced by the CPU will invoke our
second-stage code, giving us persistent, perpetual control of
the CPU to execute our second-stage rootkit.

6.2 Second-stage shellcode
The second-stage is essentially a simple code loader which
continuously monitors the router’s IOMEM range, looking
for incoming packets with a specific format. The second-
stage rootkit locates packet payloads marked with a 32-bit
magic-number. Such packets contain a 4-byte target address
value, a 1-byte flag and variable length data (up to the MTU
of the network).

When such a packet is found, the second-stage either copies
the variable length data to the 4-byte memory location as
indicated by the packet, or jumps the PC to a specified
location. In order to load such packets into the victim
router’s IOMEM, the attacker simply needs to craft IP pack-
ets which will be punted to the router’s CPU. Any packets
which must be inspected by the router’s control-plane will
suffice.3 For demonstration purposes, we used a variety of

3Different router platforms have different packet handling

UDP and ICMP packets. Such packets need not even be des-
tined to the router’s interface. Various malformed broadcast
and multicast packets are automatically punted to CPU and
copied to the router’s IOMEM region (on the 7200 platform).

When the first-stage shellcode completes, the attacker has:

Host fingerprint: The list of eret addresses is exfiltrated
to the attacker, and will uniquely identify the micro-
version of the victim’s IOS (See Section 8).

Perpetual CPU control: The second-stage code, copied
to the global-scope memory area, is invoked each time
an interrupt is serviced by IOS.

We now present a second-stage rootkit which monitors all
incoming packet-data entries, or payloads of packets which
have been punted to the router’s control-plane for process
switching, continuously scanning incoming packets for com-
mands from the attacker. Using the second-stage rootkit
presented below, the attacker can load and execute arbitrary
code by crafting command and control packets in the pay-
load of any IP packet which will be punted to the router’s
CPU. The attacker can stealthily assemble large programs
within the router’s memory by using a wide spectrum of
different packet types, like ICMP, DNS, mDNS, etc.

Since we intercept all interrupt handlers, the second-stage
code is invoked whenever any interrupt is serviced, including
timer interrupts, interrupts from linecards, etc. Therefore,
a very limited amount of computation (under a hundred
instructions) can be done inside interrupt handlers with-
out seriously impacting the router’s stability and perfor-
mance. Figure 5 illustrates a second-stage rootkit that is de-
signed specifically for high-frequency execution within inter-
rupt handlers. Each time the second-stage code is invoked,
the rootkit scans through the linked-list of packet data en-
tries located within IOMEM. Figure 6 shows a snapshot of
this data structure in IOMEM. Each time the second-stage
code is invoked, it scans through a fixed number of packet-
data entries, looking for specially marked packets containing
a 32-bit magic number. The number of packet data entries
scanned at each iteration directly impacts the reliability of
this method (See Section 8).

Once such an entry is found, the second-stage code does the
following:

Parse OpCode: Parse the packet data entry, looking for
a 1-byte opcode, along with a 4-byte target address
value.

If OpCode = Load: The second-stage code will copy the
content of the remainder of the packet-data entry to
the 4-byte address indicated by the packet.

If OpCode = Run: The second-stage code will jump the
PC to the target address indicated by the packet.

capabilities, trying to reduce the number of packets that
must be punted to CPU. However, packets destined to rout-
ing processes, like BGP, OSPF, along with ICMP and SNMP
packets are typically punted to CPU.
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Figure 5: Interrupt hijack second-stage rootkit. Each
time any ISR (interrupt service routine) is invoked,
the rootkit will seek through the latest punted pack-
ets within IOMEM for specially crafted command and
control packet payloads.

Figure 6: Highlighted words, left to right, top to bot-
tom. 1: Pointer to previous packet data node. 2.
Pointer to next packet data node. 3. Exfiltration re-
quest magic pattern. 4. Beginning of next packet data
entry, pointed to by 2.

The second-stage code is designed to execute with high fre-
quency, but in small bursts. It will execute approximately
100 instructions each time it is invoked, which allows us to
scan through several dozen packets before returning control
of the CPU back to the interrupt handler, and thus the pre-
empted IOS code.

Note that the head of the packet-data linked-list structure
is located in a well-known address within the IOMEM re-
gion, which is mapped to the same virtual-memory address
regardless of router model or IOS version [6], making this
packet-scrubbing technique reliable across all IOS versions
on many router platforms.

The intercept hijacking shellcode has several interesting ad-
vantages over existing rootkit techniques. First, the com-
mand and control protocol is built into the payload of in-
coming packets. No specific protocol is required, as long as
the packet is punted to the router’s control-plane. This al-
lows the attacker to access the backdoor using a wide gamut
of packet types, thus evading network-based intrusion detec-
tion systems. Hiding the rootkit inside interrupt handlers
also allows it to execute forever without violating any watch-
dog timers. Furthermore, the CPU overhead of this shell-
code will be distributed across a large number of random IOS
processes. Unlike with shellcodes which take over a specific
process, the network administrator cannot detect unusual
CPU spikes within any particular process using commands
like show proc cpu, making it very difficult to detect by con-
ventional means.

The video demonstration of the interrupt hijack shellcode
running on a Cisco 7204 router and 12.4T IOS can be found
at [7].

7. STEALTHY DATA EXFILTRATION
After the first-stage shellcode completes, it yields a sequence
of memory addresses where the eret instruction is located.

As Section 8 shows, this data can serve as a host fingerprint,
allowing the attacker to identify the exact micro-version of
the victim’s IOS firmware. Several known methods can be
used to exfiltrate this fingerprint back to the attacker. Note
that the entire memory sequence need not be transmitted, as
a simple hash of the data will suffice. The attacker can carry
out a VTY binding [16] to open a reverse shell back to the
attacker, or simply use the console connection to generate
an ICMP packet back to the attacker. Depending on which
services are publicly accessible on the router, the attacker
can inject the fingerprint data into the server response. For
example, the HTTP server’s default HTML can be modified.

These methods will most likely leave some detectable side-
effect which can trigger standard network intrusion detection
system. We present a new exfiltration technique which mod-
ifies the payload content of process-switched packets just
prior to transmission. The data is exfiltrated using packets
generated by router itself, thus making the detection of this
covert channel more difficult.

Once a packet is punted to the router’s control-plane, it is
copied from the network interface hardware to the router’s
IOMEM region. For efficiency, when such a packet is pro-
cess switched, the packet-data entry is not copied. Instead,
the pointer to this data is simply moved from the router’s
RX queue to its TX queue. Once there, the packet is sched-
uled for transmission, then forwarded appropriately. If the
attacker can modify the contents of the packet-data entry be-
fore it is transmitted, such payloads can be used as a vehicle
for stealthy exfiltration. Figure 7 illustrates this exfiltration
process.

This type of manipulation is highly time-sensitive, as the
attacker will typically only have a few milliseconds after the
packet’s arrival to locate and manipulate its payload, before
the packet is transmitted. However, since the second-stage
rootkit is invoked with every interrupt, it can precisely in-
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Figure 7: Data exfiltration through forwarded
packet payload. 1: The attacker crafts a packet with
a magic pattern in its payload indicating exfiltration
request. 2: Packet payload is copied into a *packet
data* structure. 3: Rootkit locates magic pattern,
overwrites remaining packet with exfiltrated data.
4: Packet is process-switched. The packet data en-
try is linked to the TX queue. 5: The requested
data is sent back to the attacker inside an ICMP
response packet.

tercept the desired packet before it is placed on the TX
queue, allowing the attacker to use the same covert com-
mand and control channel for data exfiltration. Section 8
discusses the performance of this exfiltration method. Due
to the timing constraints of the interrupt hijack shellcode
and various race conditions related to process-switching and
CEF, not all exfiltration requests sent by the attacker will
be processed. In practice, approximately 10% of exfiltra-
tion requests are answered by the rootkit when tested on an
emulated 7204VXR/NPE-400 router.

The video demonstration of this exfiltration method can be
found at [7].

8. EXPERIMENTAL DATA
The reliability of the disassembling shellcode, presented in
Section 5 and the interrupt hijack shellcode, presented in
Section 6, are shown in Table 1. Three major Cisco router
platforms, the 7200, 3600 and 2800 series routers are tested.
The two proposed shellcode algorithms are tested against
159 IOS images, ranging from IOS version 12.0 to 15.

The computational overhead of both shellcodes are shown
in Figure 10 for a typical 7200 IOS 12.4 image. In some in-
stances, the disassembling shellcode did not terminate in
time, which triggered a watchdog timer exception to be
thrown and logged (See Figure 11). The interrupt hijack
shellcode consistently completed first-stage execution with-
out triggering any watchdog timer exception.

Hardware Platform Sample Size Reliability
xref 7200 76 100%
eret 7200 76 100%
xref 3600 52 100%
eret 3600 52 100%
xref 2800 31 0%
eret 2800 31 100%

Table 1: Reliability of the disassembling shellcode
and interrupt hijack shellcode when tested on 159
IOS images.

2 4 8 16 32 64
reliability 0% 0.67% 1.29% 4.67% 5.38% 10.10%

Table 2: Reliability of exfiltration mechanism when
the number of packet-data nodes searched per invo-
cation varies. Searching more than 64 nodes caused
the test router to behave erratically.

Figure 10: CPU utilization of 7204 router during the
first-stage execution of both the disassembling and
intercept hijack shellcodes. Note that the interrupt
hijack shellcode is simpler, requires less CPU and
thus avoids watchdog timer exceptions.
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Figure 8: Distribution of the location of the
password authentication function. This lo-
cation varies greatly across the IOS .text
segment, forcing the disassembling shell-
code to search a large region.
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Figure 9: Distribution of the location of eret
instructions over 162 IOS images. These lo-
cations mark the end of all interrupt ser-
vice routines in IOS, and tend to be concen-
trated within a predictable region of IOS.

Figure 11: CPU intensive shellcodes will be caught
by Cisco’s watchdog timer, which terminates and
logs all long running processes. The disassembling
shellcode, although reliably bypasses password ver-
ification, consistently triggered the watchdog timer,
generating the above logs, which give precise mem-
ory location of the shellcode.

Table 2 shows the reliability of the exfiltration mechanism
presented in Section 7, as the number of packet-data nodes
searched during each interrupt-driven invocation. The re-
liability rate is calculated by counting the number of exfil-
tration requests the rootkit successfully answered out of 150
ICMP requests. Searching more than 64 nodes at each in-
vocation caused the router to behave erratically, sometimes
leading to crashes.

Figure 8 and 9 shows the distribution of features found by
the disassembling shellcode and interrupt hijack shellcode
respectively across 159 tested IOS images. Note that while
the string reference tends to be more widely distributed,
interrupt handler routines are typically found in a much
smaller area. While the exact location of interrupt han-
dlers still remain unpredictable, this concentration allows
the interrupt hijack first-stage shellcode to search through
a relatively small range of memory when compared to the
disassembling shellcode.

9. DEFENSE
In order to categorically mitigate against the offensive tech-
niques described in this paper, host-based defenses must
be introduced into the router’s firmware. Since persistent
rootkits must modify portions of the router’s code, a self-
checksumming mechanism can be injected into IOS to de-
tect and prevent unauthorized modification of IOS itself.
This can be generalized to all regions of the router which
should remain static during normal operation of the router,
and can include large portions of the .data, ROMMON, and
.text sections.

Such a defensive mechanism, called Symbiotic Embedded
Machines, have been proposed by the authors to solve this
problem [8]. We have shown that Symbiotes can be injected
into Cisco IOS in a version-agnostic manner to provide con-
tinuous integrity validation capability to the host router.
Our experimental results show that such Symbiotes can de-
tect unauthorized modification to any static region of IOS
in approximately 300ms. Symbiotic defenses of this type is
the focus of ongoing research.

10. CONCLUSION
We present a two-stage attack strategy against Cisco IOS, as
well as two unique multi-stage shellcodes capable of reliable
execution within a large collection of IOS images on differ-
ent hardware platforms. The disassembling shellcode, first
proposed by Felix Linder [12] operates by scanning through
the router’s memory, looking for a string reference, allowing
the attacker to disable authentication on the victim router.
The interrupt hijack shellcode injects a second-stage shell-
code capable of continuously monitoring incoming punted
packets for specially crafted command and control packets
from the attacker. The attacker can use this covert backdoor
by sending a wide gamut of packet types, like ICMP and
UDP, with specially crafted payloads. In both shellcodes,
when the first-stage completes execution, a host fingerprint
is computed and exfiltrated back to the attacker. Using this
data, the attacker can accurately identify the exact micro-



version of IOS running on the host router. Using the second-
stage rootkit, the attacker can then upload a version specific
rootkit, which can be pre-made a priori for all IOS images,
onto the victim router. This two-stage attack scenario al-
lows the attacker to compromise any vulnerable IOS router
as if the specific version of the firmware is known, bypass-
ing the software diversity hurdle which has obstructed the
reliable, large-scale rootkit execution within Cisco routers.
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Target Platform Tested IOS versions Size
All MIPS (12.0 - 12.4) 200 bytes

Table 3: MIPS-based disassembling rootkit statis-
tics.

Target Platform Tested IOS versions Size
All MIPS (12.0 - 12.4) 420 bytes

Table 4: MIPS-based interrupt hijack rootkit statis-
tics.

APPENDIX
A. DISASSEMBLING SHELLCODE
Source code is available to reputable researchers upon formal
request.

B. INTERRUPT HIJACKING SHELLCODE
Source code is available to reputable researchers upon formal
request.


