
IntFlow: Improving the Accuracy of Arithmetic Error
Detection Using Information Flow Tracking

Anonymous Submission

ABSTRACT
Integer overflow and underflow, signedness conversion, and
other types of arithmetic errors in C/C++ programs are
among the most common software flaws that result in ex-
ploitable vulnerabilities. Despite significant advances in au-
tomating the detection of arithmetic errors, existing tools
have not seen widespread adoption mainly due to their in-
creased number of false positives. Developers rely on wrap-
around counters, bit shifts, and other language constructs
for performance optimizations and code compactness, but
those same constructs, along with incorrect assumptions and
conditions of undefined behavior, are often the main cause
of severe vulnerabilities. Accurate differentiation between
legitimate and erroneous uses of arithmetic language intri-
cacies thus remains an open problem.

As a step towards addressing this issue, we present Int-
Flow, an accurate compile-time arithmetic error detection
tool which combines information flow tracking and static
code analysis. By associating sources of untrusted input
with the identified arithmetic errors, IntFlow differentiates
between undefined but developer-intended arithmetic oper-
ations, and potentially exploitable arithmetic bugs. IntFlow
examines a broad set of integer errors, covering almost all
cases of C/C++ undefined behaviors, and achieves high er-
ror detection coverage. We evaluated IntFlow using the
SPEC benchmarks and a series of real-world applications,
and measured its effectiveness in detecting arithmetic error
vulnerabilities and reducing false positives. IntFlow success-
fully detected all real-world vulnerabilities for the tested ap-
plications and achieved a reduction of 89% in false positives
over standalone static code instrumentation.

Keywords
Static analysis, information flow tracking, integer errors

1. INTRODUCTION
When developing programs in the C and C++ languages,

programming practices that involve undefined arithmetic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

operations often constitute a well-established status quo.
Language specifications and compiler checks are tolerant
towards such errors, not only to compensate for develop-
ers’ imprecise understanding of the C/C++ type systems,
but, more importantly, to allow for code optimizations that
greatly increase the performance of critical code segments.
This freedom comes at a cost: arithmetic operations consti-
tute a major source of errors, often leading to serious secu-
rity breaches when an erroneous value directly or indirectly
affects sensitive system calls or memory operations.

The root of the problem is fundamentally bound to the dif-
ferences between the physical and machine representations
of numbers: although integer and floating point numbers
are infinite, their machine representations are restricted by
their respective type-specific characteristics (e.g., signedness
and bit-length). Furthermore, not all arithmetic operations
are well-defined by the language standards, in order to allow
for a number of compiler optimizations. For instance, the
standard does not specify what the value of a signed integer
that has reached its upper/lower limits (and consequently
overflows/underflows) should be.

As it is not trivial to determine whether a particular arith-
metic operation resulting in undefined behavior is benign or
not, bugs due to integer errors are prevalent. Integer errors
are listed among the 25 most dangerous software bugs [3],
and are the root cause of various vulnerabilities such as
buffer overflows [23] and memory disclosures [2]. During
the past years, numerous attempts have been made towards
their automatic detection and prevention. Such efforts in-
clude static [21] and dynamic [7] analysis solutions, tools
based on symbolic execution and dynamic test generation [8,
17], as well as compiler extensions [23] that resolve ambigu-
ities at compilation time.

Unfortunately, despite the numerous suggested solutions,
there is no generic tool that provides effective and complete
detection and sanitization of integer bugs. A crucial reason
for this is the inherent difficulty of prevention mechanisms to
differentiate between actual—and potentially vulnerable—
integer errors, from intentional uses of wrap-around behav-
ior, type castings, bit shifts, and other constructs that serve
application-specific purposes. Furthermore, existing tools
usually focus only on certain integer error classes (mainly
examine overflows and underflows). On the other hand,
tools with broader scope typically generate a large amount
of false positives (in case of static analysis tools) or pro-
vide poor source code coverage (in case of dynamic analysis
or dynamic test generation tools). These drawbacks prevent
their widespread adoption, as developer-intended constructs

1

are typically regarded as errors, and developers are reluctant
to make major changes in existing code bases and limit their
use of performance enhancing idioms.

As a step towards addressing this issue, in this paper we
propose an approach that combines static arithmetic error
detection with information flow tracking to improve the ac-
curacy of arithmetic error detection, by focusing on reducing
the number of false positives, i.e., developer-intended code
constructs that violate language standards. Our tool, Int-
Flow, uses information flow tracking to reason about the
severity of arithmetic errors by analyzing the information
flows related to them. The main intuition behind this ap-
proach is that arithmetic errors become critical when i) they
are triggered by or depend on values originating from un-
trusted locations, or ii) a value affected by an arithmetic er-
ror propagates to sensitive locations such as the arguments
of operations like malloc() and strcpy().

To demonstrate the effectiveness of our approach, we eval-
uated IntFlow on real world programs and vulnerabilities
and verified that it successfully identifies all the real world
vulnerabilities for the applications of our testbed, producing
89% less false positives than state of the art static analysis
checkers [10].

Our work makes the following contributions:

• We present an accurate compile-time arithmetic er-
ror detection approach that combines information flow
tracking and static code analysis.

• We present IntFlow, our prototype implementation for
this approach, which operates as an LLVM add-on.
IntFlow is freely available as an open source project
and, besides static error detection, it can be used as
an online defense mechanism for certain classes of ap-
plications, as we demonstrate in our evaluation section.

• We evaluate IntFlow using real-world programs and
vulnerabilities. Our results demonstrate that IntFlow
achieves improved detection accuracy compared to pre-
vious solutions, as it suppressed more than 89% of the
false positives reported by IOC [10], our reference in-
teger error checking tool.

The rest of this paper is organized as follows: Section 2 pro-
vides some background information, and Section 3 present
our overall approach. Section 4 describes in detail IntFlow’s
design and implementation, off-line analysis methodology,
and optimizations, and in Section 5, we present the results
of our experimental evaluation using our prototype imple-
mentation. After discussing related work in Section 6, we
discuss the limitations of our approach in Section 7 and con-
clude in Section 8.

2. BACKGROUND
To effectively deal with integer errors in real world appli-

cations, it is necessary to first define what is considered an
error. Doing so is not trivial, as apart from the mere exam-
ination of conformance to the language standard, we must
also examine whether pieces of seemingly erroneous code—
from the perspective of the language specification—are in
reality explicitly written in that way due to the developer’s
intention, typically for performance, convenience, or other
reasons.

In this section, we discuss how the C/C++ language stan-
dards define correctness for arithmetic operations, and ex-
amine why developers often write code that deviates from
the language specification. We also present examples of ex-
ploitable vulnerabilities caused by integer errors, and demon-
strate the importance of good programming practices.

2.1 Integer Errors and Undefined Behavior
Although the C/C++ standards explicitly define the out-

come of most integer operations, they still leave a number
of corner cases undefined. As an example, the C11 standard
considers an unsigned integer overflow a well-defined oper-
ation, whose result is the minimum value obtained after the
wrap-around. In contrast, it leaves signed integer overflows
undefined. This choice leaves room for compiler implemen-
tations to handle them in a way that produces optimized
binaries [22]. For instance, signed integer overflows (or un-
derflows) enable compiler developers to implement constant
propagation [5], an optimization that infers invariants from
expressions such as i+1 < i and replaces them with a con-
stant Boolean value.

Table 1 lists special cases of integer operations and their
definedness. It should be noted that although more in-
stances of undefined behavior (not necessarily restricted to
integer operations) are declared in the language specifica-
tion, we only consider those relevant to this work.

Arithmetic Operation Definedness

Unsigned overflow (underflow) defined

Singed overflow (underflow) undefined

Signedness conversion undefined∗

Implicit type conversion undefined∗

Oversized shift undefined

Division by zero undefined
∗if value cannot be represented by the new type

Table 1: Summary of defined and undefined arithmetic op-
erations according to the C/C++ language specification.

As in practice not all cases of undefined behavior necessar-
ily result in actual errors, the difficulty of dealing with these
types of bugs lies in distinguishing critical integer errors
from developer-intended errors. The intention of a devel-
oper, however, cannot be formally defined or automatically
derived, as the code patterns that are present on a piece of
software are deeply related to each developer’s knowledge,
ability, and programming style.

Although writing code that intentionally relies on unde-
fined operations is generally considered a bad programming
practice (as the outcome of those operations can be arbi-
trary, depending on the architecture or the compiler), there
are several cases in which the community has reached con-
sensus on what is the expected behavior of the compiler
in terms of the generated code, mainly due to empirical
evidence. This explains why we still see idioms that ac-
tively take advantage of undefined behavior so frequently:
although, according to the standard, the result of the oper-
ation is undefined, developers have an empirically derived
expectation that compilers will always handle such cases in
a consistent manner.

This expectation creates serious complications whenever
developers check the validity of their code with state-of-the-

2

1 UINT MAX = (unsigned) −1;
2 INT MAX = 1 << (INT WIDTH − 1) + 1;

Listing 1: Widely used idioms that according to the stan-
dard correspond to undefined behavior.

1 /∗ struct containing image data, 10KB each ∗/
2 img t ∗table ptr;
3 unsigned int num imgs;
4 num imgs = get num imgs();
5 ...
6 unsigned int alloc size = sizeof(img t) ∗ num imgs;
7 ...
8 table ptr = (img t∗) malloc(alloc size);
9 ...

10 for (i = 0; i < num imgs; i++)
11 { table ptr[i] = read img(i); } /∗ heap overflow ∗/

Listing 2: An unsigned integer overflow as a result of a mul-
tiplication operation (line 8), which in turn results in an
invalid memory allocation (line 8) and unintended access to
the heap (line 13).

art static analysis tools. These tools evaluate code based on
strict conformance to the language specification, and conse-
quently generate a large amount of false positives. Thus, the
generated reports are often overlooked by developers who
struggle to distinguish which of the reported bugs are ac-
tual errors and which are not. Unfortunately, tools based
on dynamic code analysis also do not provide strong guar-
antees in these cases, as they suffer from low code coverage.

To further shed light on the complexity of this issue, in
the following we present two characteristic integer error ex-
amples and discuss the complications introduced by the use
of undefined operations.

2.2 Integer Error Examples
While the task of automatically detecting undefined in-

teger operations is relatively easy, the true difficulty lies in
identifying the developer’s intention behind their legitimate
or illegitimate use of arithmetic operations that do not con-
form to the language standard.

Listing 1 presents two C statements in which developers
intentionally rely on undefined behavior, mainly for perfor-
mance reasons. Both are based on assumptions on the nu-
merical representation used by the underlying system (two’s
complement). Line 1 shows a case of signedness casting in
which the original value cannot be represented by the new
type. In Line 2, a shift operation of INT_WIDTH - 1 is also
undefined1 but it conventionally returns the minimum value
of the type, while the addition operation incurs a signed
overflow whose behavior is again undefined. Although these
cases are violations of the language standard, the desir-
able operation of an integer overflow checker would be to
not report them, as they correspond to developer-intended
behavior—otherwise, such cases are considered false posi-
tives [10].

In contrast, in the example of Listing 2, the unsigned
integer variable (num_imgs) might overflow as a result of

1It is undefined according to the C99 and C11 standards.
The ANSI C standard defines this behavior.

the multiplication operation at line 8. This behavior is well-
defined by the standard, but the overflow may result in the
allocation of a memory chunk of invalid (smaller) size, and
consequently, to a heap overflow. An effective arithmetic
error checker should be able to identify such dangerous cases,
which can potentially lead to exploitable vulnerabilities, as
it is clear that the developer did not intend for this behavior.

3. APPROACH
The security community is still failing to completely elim-

inate the problem of integer errors even after years of ef-
fort [10, 17, 23, 21]. One of the main reasons is the prob-
lem of differentiating between actual errors, which can po-
tentially lead to reliability or security flaws, from intended
uses of undefined constructs, as a results of concise devel-
oper choices—the latter are still considered errors by rigor-
ous static checkers that strictly follow language standards.
We differentiate between the two by considering developer-
intended and critical arithmetic errors. Before describing
the design of IntFlow, we first provide a more concrete def-
inition of what we consider as critical arithmetic errors.

Definition 1. An arithmetic error is potentially critical if
it satisfies one of the following conditions:

1. At least one of the operands in an erroneous statement
originates from an untrusted source. Examples of un-
trusted sources include the network, user input, files,
and so on.

2. The result of an erroneous operation may propagate to
a sensitive program location. Examples of sensitive lo-
cations include memory allocation functions (mmap(),
malloc(), . . .), string handling functions (strcpy(),
strcat(), . . .), and so on.

As capturing the intention of developers is a hard prob-
lem, IntFlow focuses on the detection of arithmetic errors
that might constitute exploitable vulnerabilities or cause re-
liability issues. This is achieved not only by focusing on
the identification of arithmetic errors (according to the lan-
guage standard), which in itself is a tractable problem, but
also by considering the information flows that affect the er-
roneous code. The rationale behind this definition is that (a)
arithmetic errors influenced by external inputs are probably
not developer-intended, and may potentially be exploited
through carefully crafted inputs, and (b) arithmetic errors
typically result in severe vulnerabilities only when they af-
fect inputs to sensitive library and system operations.

Figure 1 illustrates different types of information flows
that may involve erroneous arithmetic operations. Critical
errors are related to information flows that originate from
untrusted inputs, or that eventually reach a sensitive oper-
ation, such as a system call, through value propagation. In
cases where the input of an arithmetic operation is untrusted
(condition 1.1) or a sensitive sink is reached (condition 1.2),
the error is flagged as critical. On the other hand, arith-
metic errors influenced only by benign inputs are considered
less likely to be used in exploitation attempts.

The information flow based approach enables us to handle
cases similar to the examples presented in Section 2.2. Int-
Flow can also silence error reports caused by statements sim-
ilar to those presented in Listing 1, since it can trace that the
origin of the value that lead to the undefined behavior is a

3

Untrusted
Inputs

read(), recv() ...

Trusted
Inputs

gettimeofday(),
CONSTANT ...

Flow 1

Arithmetic
Operations

Sensitive
locations

malloc(), strcpy() ...X, %, +, -, <<, >>

Flow 2

Figure 1: Information flows to and from the location of an
arithmetic error.

constant initialization which is de facto developer-intended.
The code snippet in Listing 2, contains two different types
of flows. The first one connects get_num_imgs() (line 6)
with the multiplication operation (line 8) while the second
one connects the result of the multiplication with a memory
allocation function (malloc()) which is considered a sensi-
tive system location. The former is a Type 1 flow because
the value of the multiplication operand originated from an
untrusted input location, while the latter is a Type 2 flow
since the result of the operation affects a sensitive function
call. IntFlow would retain the checking mechanism in both
cases, ensuring that a maliciously crafted input leading to
an arithmetic error would be detected and reported.

4. DESIGN AND IMPLEMENTATION
In this section we present the design and implementation

of IntFlow, a tool that combines Information Flow Track-
ing [18] with a custom integer error checking tool [10] to
improve the accuracy of arithmetic error detection. The
main goal of IntFlow is to reduce the number of false posi-
tives produced by previous static arithmetic error checkers.
In this context, the term “false positive” refers to reporting
developer-intended errors (according to our definition in Sec-
tion 2.1) as critical errors. Although from the perspective of
the language standard these correspond to erroneous code,
the prevalence of such constructs makes reports of such is-
sues a burden for security analysts, who are interested only
in critical errors that may form exploitable vulnerabilities.

IntFlow integrates a set of components to its custom anal-
ysis engine to perform data flow tracking along with integer
error checking. An integer error checker [10] instruments
potentially erroneous operations and a static information
tracking tool [18] performs inter-procedural analysis. In
the following, we discuss the rationale of our decision to
use these components along with a detailed description of
each technology. Moreover we describe their integration into
a system that reduces the number of reported developer-
intended errors by leveraging information flow tracking.

4.1 Main Components
IOC operates at the Abstract Syntax Tree (AST) pro-

duced by Clang [1], a C/C++ front-end of LLVM [14]. It
instruments all arithmetic operations such as additions, mul-
tiplications and shifts, as well as most of unary, casting and
type conversion operations. In contrast to previous tools
that focus on a subset of integer errors (typically overflows
and underflows), IOC provides protection against a broader
set of integer errors. Even though it focuses mainly on errors

with undefined behavior based on the language standards,
it can also protect against errors that do not fall into this
category, covering most of the integer error classes presented
in Table 1.

IOC instruments all arithmetic operations that may lead
to an erroneous result, and inserts checks accordingly. Es-
sentially, for each integer operation inside a basic block, ad-
ditional basic blocks that implement the error-checking logic
are inserted into the control flow graph, and users are al-
lowed to register callback functions for error handling. The
fact that IOC instruments blindly all arithmetic operations
is a major source of false positives, common in many integer
error detection systems thus IntFlow actively provisions for
reducing false positives by eliminating checks for developer-
intended errors. IOC is a major component of our archi-
tecture, as it provides assurance that all potentially serious
arithmetic errors can be checked. It is then up to the in-
formation flow analysis to differentiate between developer-
intended and critical errors, and report only the latter.

For IntFlow’s information tracking mechanism, we em-
ploy llvm-deps [18], an LLVM compiler pass implement-
ing static information flow tracking in a manner similar to
the classic data flow analysis [5]. It is designed as a con-
text sensitive (inter-procedural) analysis tool that allows for-
ward and backward slicing on source and sink pairs of our
choice, implementing the DSA [15] algorithm. DSA per-
forms context-sensitive, unification-based points-to analysis
that allows us to track data flows among variables referred
by pointer aliases. It is important to note that the analysis
scope of llvm-deps is limited to a single object file, as it
is implemented as a compile-time optimization pass and not
as a link-time optimization pass.

4.2 Putting It All Together
Figure 2 illustrates the overall architecture of IntFlow:

First, IOC adds checks to the integer operations that are ex-
posed by Clang in the AST and then llvm-deps performs
static IFT analysis on the LLVM intermediate representa-
tion (IR).

To reduce unnecessary checks that lead to false positives,
IntFlow uses llvm-deps to examine only certain flows of in-
terest. Specifically, IntFlow examines only flows stemming
from untrusted sources, or ending to sensitive sinks, with
respect to Definition 1 in Section 2.1. Initially, IntFlow per-
forms forward slicing: starting from a particular source—
essentially a program variable—used in a potentially erro-
neous arithmetic operation, it examines whether the result
of the operation flows into sinks of interest. Once such a vari-
able is found, IntFlow performs backward slicing, to verify
that the sink is actually affected by that particular source.
Since the flow tracking mechanism does not offer full code
coverage, we employ this two-step process to gain confidence
on the accuracy of the flow and verify its validity. Once the
source is reached when using backward slicing starting from
the sink, the flow is considered established.

4.3 Modes of Operation
As discussed in Section 3, IntFlow uses two different types

of information flow to pinpoint errors. The first associates
untrusted inputs with integer operations whilst the second
associates the outcome of integer operations with its use in
sensitive system operations. Once IOC inserts checks in all
arithmetic operations that may lead to an error, IntFlow

4

Clang
ASTC/C++ LLVM-IR Compile,

Link

Arith. Operations
Instrumented

IntFlow
Binary

IFT Integration

Trusted / Untrusted
Input Tracking

Sensitive Operation
Tracking

Figure 2: Overall architecture of IntFlow.

eliminates unnecessary checks operating in one of the fol-
lowing modes:

• In whitelisting mode, all checks for operations whose
arguments come from trusted sources are removed.

• In blacklisting mode, IntFlow only maintains checks for
operations whose operands originate from untrusted
sources and removes all other checks.

• In sensitive mode, IntFlow only maintains checks for
operations whose results may propagate into a sensi-
tive sink.

In the following we elaborate more on the specifics of each
of the previous modes:

4.3.1 Trusted and Untrusted Inputs
For each operation that may result in an arithmetic error,

IntFlow’s IFT analysis determines where the values of the
involved operands originate from. If their origin corresponds
to some input source, IntFlow classifies it into either trusted
or untrusted, and handles it accordingly, using one of the
following two modes of operation.

White-listing: Erroneous arithmetic operations for which
all operands originate from trusted sources are unlikely to
be exploitable. Thus, for those cases, IntFlow safely removes
the error checks inserted by IOC at the instrumentation
phase. Before an operation is verified as safe, IntFlow needs
to examine the origin of all data flowing to that operation.
Values derived from constant assignments or from safe sys-
tem calls and library function calls, e.g., gettimeofday()
or uname(), are typical examples of sources that can be
trusted, and thus white-listed.

Black-listing: Input sources that can be affected by
users are considered untrusted, since carefully crafted in-
puts might lead to integer errors, and potentially, successful
exploitation. If any of the operands has a value affected by
such a source, IntFlow retains the error checking instrumen-
tation. System and library calls that read from untrusted
sources, such as read() and recv(), are examples of this
type of sources.

By combining the above two approaches, IntFlow selects
the unsafe integer operations that will be instrumented with
protection checks. These modes of operation can be comple-
mented by IntFlow’s third mode, which refines the analysis
results for the surviving checks.

4.3.2 Sensitive Operations
In this mode of operation, IntFlow reports flows that orig-

inate from integer error locations and propagate to sensi-
tive sinks, such as memory-related functions, system calls

etcetera. Moreover, in contrast to the previous mode, when-
ever an integer error occurs, the error is not reported at the
time of its occurrence, but only once it propagates as in-
put into one of the sensitive sinks. This is very effective in
suppressing false positives, since errors that do not lead to a
sensitive operation from some path in the control flow graph
are not generally exploitable. In the following, we explain
how IntFlow achieves runtime detection of errors whenever
execution reaches a sensitive sink.

To report errors at the sensitive sink locations, IntFlow
performs the following operations:

• Initially, the tool identifies all integer operations whose
results may propagate into a sensitive sink at runtime.
This step further eliminates checks that do not lead
into a sensitive sink and therefore are probably not
exploitable. A global array is created for each sensi-
tive sink, holding one entry per arithmetic operation
affecting the sink.

• Whenever an integer operation produces an erroneous
result, the respective entry for this operation in the
affected global tables is set to true (denoting that
the flow originated from an operation that produced
an erroneous result). If the execution continues and
does not reach the sensitive location, the respective
entries are set to false, denoting that the result of the
sensitive operation will not be affected by the integer
operation.

• If the execution reaches a sensitive operation, the re-
spective global array is examined. If one or more en-
tries are set to true, execution is interrupted since an
erroneous value from the integer operation can have
affect on the sensitive system operation.

While it is better to combine the two modes to estab-
lish end-to-end monitoring and detection of suspicious flows,
we can also use each mode of IntFlow independently: the
first mode to generally reduce the number of false positives
and the second mode to detect exploitable vulnerabilities.
In Section 5, we evaluate the effectiveness of IntFlow using
the white-listing mode and in Section 7 examine further the
characteristics of each of its mode of operations suggesting
their ability to not only detect critical errors but also to
evaluate the severity of each reported error.

4.4 Implementation Details
IntFlow is implemented as an LLVM [14] pass written

in ∼3,000 lines of C++. Briefly, it glues together its two

5

main components (IOC and llvm-deps) and supports fine-
tuning of its core engine through custom configuration files.
In the following, we outline the main characteristics of Int-
Flow regarding its core engine and its support for developer
customizations.

4.4.1 Pass Characteristics
With respect to IntFlow’s integration with Clang, IntFlow

can be invoked by simply passing the appropriate flags to the
compiler, without any further action needed from the side
of the developer. Although IOC has been integrated into
the LLVM main branch since version 3.3, for the current
implementation of IntFlow we used an older branch of IOC
that supports a broader set of error classes than the latest.
IntFlow’s LLVM pass is placed at the earliest stage of the
LLVM pass dependency tree, in order to prevent a subse-
quent optimization pass from optimizing way the semantics
of integer operations. During the compilation process, arith-
metic error checks are inserted by IOC, and subsequently se-
lectively filtered by IntFlow. Any basic blocks corresponding
to IOC checks that have been disabled by IntFlow are then
optimized away by the compiler.

4.4.2 Configuration Options
IntFlow offers developers the option to explicitly specify

arithmetic operations or sources that need to be whitelisted
or blacklisted. In addition, it can be configured to overall
exclude any specific file from its analysis or ignore specific
lines in the source code. Developers can also specify the
operation mode (whitelisting, blacklisting or sensitive-sink
analysis) that IntFlow will use, as well as override or extend
the default set of sources and sinks that will be considered
during information flow analysis. Finally, they can specify
particular callback actions that will be triggered upon an
error, such as activating runtime logging or exiting with a
suitable return value whenever an error occurs. These fea-
tures offer great flexibility to developers, enabling them to
fine-tune the granularity of the generated reports and adjust
the built-in options of IntFlow to the exact characteristics
of their source-code.

5. EVALUATION
In this section, we present the results of our experimental

evaluation using our prototype implementation of IntFlow.
To assess the effectiveness and performance of IntFlow, we
look into the following aspects:

• What is the accuracy of IntFlow in detecting and pre-
venting critical arithmetic errors?

• How effective is IntFlow in reducing false positives?
That is, how good is it in omitting developer-intended
errors from the reported results?

• When used as a protection mechanism, what is the
runtime overhead of IntFlow compared to native exe-
cution?

Our first set of experiments aims to evaluate the tool’s
ability to identify and mitigate critical errors. For this pur-
pose, we use two datasets, consisting of artificial and real-
world vulnerabilities, respectively. Artificial vulnerabilities
were inserted to a set of real-world applications, correspond-
ing to various types of MITRE’s Common Weakness Enu-
meration (CWE) [4]. This dataset provides a broad test

suite that contains instances of many different types of arith-
metic errors, which enables us to evaluate IntFlow in a well-
controlled environment, knowing exactly how many bugs
have been inserted, and the nature of each bug. Likewise,
our real-world vulnerability dataset consists of applications
such as image and document processing tools, instant mes-
saging clients, and web browsers, with known CVEs, allow-
ing us to get some insight on how well IntFlow performs
against real-world, exploitable bugs.

In our second round of experiments, we evaluate the ef-
fectiveness of IntFlow’s information flow tracking analysis
in reducing false positives, by running IntFlow on the SPEC
CPU2000 benchmark suite and comparing its reported er-
rors with those of IOC. IOC instruments all arithmetic op-
erations, providing the finest possible granularity for checks.
Thus, by comparing the reports produced by IntFlow and
IOC, we obtain a base case for how many developer-intended
errors are correctly ignored by the IFT engine.

Finally, to obtain an estimate of the tool’s runtime over-
head, we run IntFlow over a diverse set of applications of
varying complexity, and establish a set of performance bounds
for different types of binaries. All experiments were per-
formed on a system with the following characteristics: 2×
Intel(R) Xeon(R) X5550 CPU @ 2.67GHz, 2GB RAM, i386
Linux.

5.1 Accuracy Evaluation
In all experiments for evaluating accuracy, we configured

IntFlow to operate in whitelisting mode, since this mode
produces the greatest number of false positives, as it pre-
serves most of the IOC checks among the three modes. Thus,
whitelisting provides us with an estimation of the worst-case
performance of IntFlow, since the other two modes will al-
ways be implementing a more fine-tuned instrumentation.

5.1.1 Evaluation Using Artificial Vulnerabilities
To evaluate the effectiveness of IntFlow in detecting crit-

ical errors of different types, we used seven popular open-
source applications with planted vulnerabilities from nine
distinct CWE categories.2 Table 2 provides a summary of
the applications used and the respective CWEs.

Each application is replicated to create a set of test-case
binaries. In every test-case binary—essentially an instance
of the real-world application—a vulnerability of a given type
is planted and then the application is compiled with Int-
Flow. Subsequently, each test-case binary is executed over
a set of benign and malicious inputs (inputs that exploit the
vulnerability and result in abnormal behavior). A correct
execution is observed when the binary executes normally on
benign inputs or terminates before it can be exploited on
malicious inputs.

Overall, IntFlow was able to correctly identify 79.30%
(429 out of 541) of the planted artificial vulnerabilities. The
20.7% missed are due to the accuracy limitations of the IFT
mechanism, which impacts the ability of IntFlow to correctly
identify flows, and also due to vulnerabilities triggered by
implicit information flows (i.e., non-explicit data flows re-
alized by alternate control flows), which IFT is inherently
unable to detect. We discuss ways in which accuracy can be
further improved in Section 7.

2All modified applications for this experiment were provided
to us by MITRE [6].

6

Applications CWEs

Cherokee 1.2.101 CWE-190

Grep 2.14 CWE-191

Nginx 1.2.3 CWE-194

Tcpdump 4.3.0 CWE-195

W3C 5.4.0 CWE-196

Wget 1.14 CWE-197

Zshell 5.0.0 CWE-369

CWE-682

CWE-839

Table 2: Summary of the applications and CWEs used in
the artificial vulnerabilities evaluation.

Program CVE Number Type Detected?

Dillo CVE-2009-3481 Integer Overflow Yes

GIMP CVE-2012-3481 Integer Overflow Yes

Swftools CVE-2010-1516 Integer Overflow Yes

Pidgin CVE-2013-6489 Signedness Error Yes

Table 3: CVEs examined by IntFlow.

To examine IntFlow’s ability to ignore developer-intended
errors, we exercised IntFlow over sets of benign inputs on
vanilla versions of each application. Since those inputs pro-
duce the expected output, we assume that all the errors they
trigger are developer-intended either explicitly or implicitly.
With this in mind, we compared the error checks of Int-
Flow with those of IOC to quantify the ability of our tool in
removing unnecessary checks. Overall, IntFlow eliminated
90% of the false checks (583 out of 647) when tested with
the default set of safe inputs. This reduction was achieved
due to the successful identification of constant assignments
and the whitelisting of secure system calls, as discussed in
Section 3.

5.1.2 Mitigation of Real-world Vulnerabilities
In our next experiment, we examined the effectiveness of

IntFlow in detecting and reporting real-world vulnerabili-
ties. For this purpose, we used four widely-used applica-
tions and analyzed whether IntFlow detects known integer-
related CVEs included in these programs. Table 3 summa-
rizes our evaluation results. IntFlow successfully detected all
the exploitable vulnerabilities under examination. From this
small-scale experiment, we gain confidence that IntFlow’s
characteristics are maintained when the tool is applied to
real world programs, and therefore is suitable as a detection
tool for real-world applications.

5.1.3 False Positives Reduction
Reducing the number of false positives is a major goal of

IntFlow, and this section focuses on quantifying how effec-
tive this reduction is. Our first measurement is made using
SPEC CPU2000, a suite that contains C and C++ programs
representative of real-world applications. Since IOC is a core
component of IntFlow, we chose to use CPU2000 to examine
what are the improvements of IntFlow’s IFT in comparison
to the results of IOC as those were previously reported [10].
We ran the SPEC benchmarks using the “test” data sets for
both IOC and IntFlow, so that we could manually analyze
all the reports produced by IOC and classify them as true

gzip vpr gcc crafty parser perlbmk gap vortex

N
um

be
r

of
 R

ep
or

te
d

A
rit

hm
et

ic
 E

rr
or

s

0

10

20

30

40

100

150

200

250
IOC Intended

IOC Critical

IntFlow Intended

IntFlow Critical

Figure 3: Number of critical and developer-intended arith-
metic errors reported by IOC and IntFlow for the SPEC
CPU2000 suite. IntFlow identifies the same number of crit-
ical errors, while it reduces significantly the number of re-
ported developer-intended errors.

Overall Dillo Gimp Pidgin SWFTools

IOC 330 31 231 0 68

IntFlow 82 26 13 0 43

Table 4: Reported errors by IOC and IntFlow for some of
the vulnerable real-world programs.

or false positives (i.e., critical or developer-intended errors,
respectively). Once all reports were categorized based on
Definition 1, we examined the respective results of IntFlow.
We report our findings in Figure 3.

IntFlow was able to correctly identify all the critical errors
(64 out of 64) that were triggered during execution, and
reduced the reports of developer-intended errors by ∼89%
(419 out of 471).

Real-world Applications.
In Section 5.1.2 we demonstrated how IntFlow effectively

detected known CVEs for a set of real-world applications.
Here, we examine the reduction in false positives achieved
when using IntFlow’s core engine instead of static instru-
mentation with IOC alone. To collect error reports, we ran
each application with benign inputs as follows: for Gimp, we
scaled the ACSAC logo and exported it as gif; for SWFTools,
we used the pdf2swf utility with a popular e-book as input;
for Dillo, we visited the ACSAC webpage and downloaded a
PDF with the list of notable items published in 2013; and for
Pidgin, we performed various common tasks (registering a
new account, logging-in and out, and so on). Table 4 shows
the reports produced by IOC and IntFlow respectively.

Overall, IntFlow was able to suppress 75% of the errors
reported by IOC during the execution of the applications on
benign inputs. Although this evaluation does not provide
full coverage on the number of generated reports (for in-
stance, we did not observe any false positives for pidgin with
the tests we performed), it allows us to obtain an estimate of
how well IntFlow performs in real world scenarios. It should
be noted that the effectiveness in the reduction of false pos-

7

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

grep wget wwwx zshx tcpd cher nginx

Sl
ow

d
ow

n
(n

or
m

al
iz

ed
)

Whitelisting
Blacklisting

Sensitive

Figure 4: Runtime overhead for the applications of Sec-
tion 5.1.1 (normalized over native execution).

itives is highly dependant on the nature of each application,
as well as on the level of the execution’s source coverage.
That is, the more integer operations occur throughout the
execution, the greater the expected number of false posi-
tives. For instance, Gimp’s functionality is tightly bound
to performing arithmetic operations for a number of image
processing actions, and thus IOC reports many errors, most
of which are developer-intended, while Dillo does not share
the same characteristics and as a result exhibits a smaller
reduction in false positives.

5.2 Runtime Overhead
Although IntFlow was not designed as a runtime detection

tool but rather as an offline integer error detection mecha-
nism, one may wonder whether it could be customized to
offer runtime detection capabilities. In this section, we seek
to examine the performance of IntFlow for various applica-
tions, when running them with all the automatically inserted
arithmetic error checks. For this purpose, we perform a set
of timing measurements on the applications used in Sec-
tion 5.1.1. For each run, we measured the time that was
required to complete a series of tasks for each of IntFlow’s
modes of operation, and then normalized the running time
with respect to the runtime of the native binary. Reported
results are mean values over ten repetitions of each experi-
ment, while the reported confidence intervals correspond to
95%. We ran all binaries natively, and measured user time
with the time utility.

For grep, we search for strings matching a complex regular
expression in a 1.2GB file. For wget, we download a 1GB file
over a 1Gbps link from a remote server. To measure wwwx,
we perform verbose GET requests on a series of websites.
For zshx, we execute a series of commands that are internal
to the shell. For the web servers, Cherokee was configured
for IPv4 only, while for Nginx all configurations options were
left to their default setting. We measured both servers’ per-
formance using Apache’s ab benchmarking utility and static
HTML files.

Figure 4 shows the results of our evaluation. IntFlow in-
curs a high overhead in applications that involve a large
number of integer operations, such as grep.3 Although in

3Our experience with the SPEC CPU2000 benchmarks

such applications the overhead is rather prohibitive, and
cancels out the benefits of using a static mechanism, in other
cases, such as the cher and nginx servers, the overhead is
within an acceptable 20%. Thus, it could be the case that
IntFlow might be used as a runtime defense for certain types
of applications, i.e., I/O-bound. As each of IntFlow’s modes
of operation targets different flows and can be fine-tuned by
developers, customization can result in different overheads,
as different flows dominate the execution of different appli-
cations. This is the reason we observe different slowdowns
per mode: depending on whether the dominating flows in-
volve sensitive calls (as is the case with web servers), the
sensitive mode will be slower or faster than the other two
modes, and so on.

6. RELATED WORK
During the past years, as the protection mechanisms against

buffer overflows became more mature, great focus was placed
upon efficiently dealing with integer overflows. This sec-
tion summarizes the main characteristics of the several ap-
proaches that have been followed so far for addressing integer
overflows and outlines the connection between the current
work and existing research on the field.

6.1 Static Analysis
Static analysis tools provide good coverage but generally

suffer from a high rate of false positives. IntPatch [23] is
built on top of LLVM [14] and detects vulnerabilities utiliz-
ing the type inference of LLVM IR. Similarly to our tool, Int-
Patch uses forward & backward analysis to classify sources
and sinks as sensitive or benign. Each sensitive variable is
located through slicing. If a variable involved in an arith-
metic operation has an untrusted source and the respective
sink may overflow, IntPatch will insert a check statement
after that vulnerable arithmetic operation. If an overflow re-
sult is used for sensitive actions such as memory allocations,
IntPatch considers it a real vulnerability. Contrary to the
current work though, IntPatch does not deal with all types
of integer overflows and also does not address programmer-
inserted sanitization routines.

KINT [21] is a static tool that generates constraints rep-
resenting the conditions under which an integer overflow
may occur. It operates on LLVM IR and defines untrusted
sources and sensitive sinks via user annotations. KINT
avoids path explosion by performing constraint solving at
the function level and by statically feeding the generated
constraints into a solver. After this stage, a single path con-
straint for all integer operations is generated. Unfortunately,
despite the optimization induced by the aforesaid technique,
the tool’s false positives remain high and there is a need for
flagging false positives with manual annotations in order to
suppress them. Moreover, contrary to this work, KINT at-
tempts to denote all integer errors in a program and does
not make a clean distinction between classic errors and er-
rors that constitute vulnerabilities.

SIFT [16] uses static analysis to generate input filters
against integer overflows. If an input passes through such
filter, it is guaranteed not to generate an overflow. Initially,

showed that the overhead on benchmarks with very frequent
integer operations, such as gzip, is in the range of ∼x10,
prohibiting IntFlow from being used as a generic runtime
detection mechanism for such applications.

8

the tool creates a set of critical expressions from each mem-
ory allocation and block copy site. These expressions con-
tain information on the size of blocks being copied or al-
located, and are propagated backwards against the control
flow, generating a symbolic condition that captures all the
points involved with the evaluation of each expression. The
free variables in the generated symbolic conditions represent
the values of the input fields and are compared against the
tool’s input filters. A significant difference of this paper in
comparison to SIFT is that the latter nullifies overflow er-
rors but does not detect them nor examines whether they
could be exploitable.

IntScope [19] decompiles binary programs into IR and
then checks lazily for harmful integer overflow points. To
deal with false positives, IntScope relies on a dynamic vul-
nerability test case generation tool to generate test cases
which are likely to cause integer overflows. If no test case
generates such error, the respective code fragment is flagged
appropriately. This approach varies significantly from the
one used in our tool as it relies on the produced test cases
to reveal a true positive: if a test case does not generate an
overflow, that does not guarantee that no overflow occurs.
In addition, IntScope regards all errors as generic, without
focusing particularly on errors leading to vulnerabilities.

Finally, RICH [7] is a compiler extension which enables
programs to monitor their own execution and detect poten-
tial attacks exploiting some integer vulnerability. Although
RICH is very lightweight, it does not handle cases of pointer
aliasing and also produces false positives in cases where de-
velopers intentionally abuse undefinedness features of the
C/C++ standard, both of which are basic components of
IntFlow’s design.

6.2 Dynamic & Symbolic Execution
Dynamic Execution tools use runtime checks to prevent

unwanted program behavior. IOC [10] uses dynamic anal-
ysis to detect the occurrence of overflows in C/C++ pro-
grams. The tool performs a compiler-time transformation to
add inline numerical error checks and then relies on a run-
time handler to prevent any unwanted behavior. The instru-
mentation transformations operate on the Abstract Syntax
Tree (AST) in the Clang front-end, after the parsing, type-
checking and implicit type conversion stages. IOC checks
for overflows both in shifting and arithmetic operations and
makes a clear distinction between well-defined and unde-
fined behaviors, that is, it does not consider all overflows
malicious. Our tool adopts this perspective and comple-
ments IOC in the sense that it addresses the issue of high
false positives by integrating static instruction flow tracking
to the performed analysis.

Symbolic Execution tools provide low false positives but
can’t easily achieve full coverage. They usually use dynamic
test generation [11] to detect violations. SmartFuzz [17] gen-
erates a set of constraints defining unwanted behavior and
determines whether some input could trigger an unwanted
execution path. This tool does not require source code and
makes use of the Valgrind framework for its symbolic exe-
cution and scoring. Coverage and bug-seeking queries are
explored in a generational search, whilst queries from the
symbolic traces are solved generating a set of new test cases.
Thus, a single symbolic execution feeds the constraint solver
with many queries, which themselves generate new test cases
etc. KLEE [8] uses symbolic execution to automatically gen-

erate tests that achieve high coverage for large-scale pro-
grams but it is not focused on integer errors, thus it does
not achieve as good results against integer overflows as other
tools that targeted towards integer operations.

7. DISCUSSION

7.1 Static Information Flow Tracking
A core component of IntFlow is llvm-deps [18], which,

as an implementation of static information flow tracking, is
expected to provide good source code coverage with low run-
time overhead. However, we should note that llvm-deps
suffers from inherent inaccuracy issues, largely due to the
limitations of its points-to analysis [15] and due to its data
flow analysis mechanism. These limitations are amplified
when one wishes to extend the scope of the technique by
performing inter-procedural analysis. Fortunately, as our ex-
perience revealed, sources and sinks typically reside within
a single function. This can be viewed as an instance of
the classic trade-off between accuracy and performance: for
cases where accuracy has the maximum priority, we may
choose to incorporate dynamic IFT [13] and attempt to re-
duce any increased runtime overhead using techniques that
combine static and dynamic analysis [12, 9].

7.2 IntFlow for Runtime Detection
While the primary use case of IntFlow is to help users

analyze existing code bases at during the development phase
by reducing the amount of false positives, another use case
is to deploy the tool as a runtime defense against zero-day
vulnerabilities. For this purpose, the two main issues that
must be addressed are i) the increased runtime overhead due
to the inserted checks, and ii) any remaining false positives
after IntFlow’s analysis.

7.2.1 Fast Integer Error Checking
The main source of runtime overhead, as shown in Sec-

tion 5.2, can be attributed to IOC’s checks, as it replaces
each arithmetic operation with at least three basic blocks to
perform the checking operation. Given the significance of
the problem, there have been many previous proposals for
implementing fast and efficient checking operations [20], so
IntFlow could adopt them to improve performance.

7.2.2 False Positives
As shown in Section 5, IntFlow was able to identify a large

portion of the developer-intended errors in the programs un-
der examination, but still missed some cases. In order to
provide as a broad coverage of false positives as possible,
IntFlow supports manual labeling of false positives. Devel-
opers can dedicate a separate off-line phase to apply IntFlow
using a trusted input set over their application, and pinpoint
the locations in which IntFlow falsely flags a benign opera-
tion as malicious.

A more suitable solution for this use case would be the
incorporation of dynamic IFT, which again would impose
high runtime overhead. For this, we can consider an efficient
dynamic IFT approach [9] that again leverages DataFlow
analysis.

7.3 Quality of the Produced Reports
Another advantage of IntFlow’s design is the fact that its

three different modes of operation offer an estimation of how

9

critical a particular bug is. Errors reported by the sensitive
mode have the highest risk, as they involve sensitive oper-
ations and are more likely to be exploitable. Likewise, in
black-listing mode, IntFlow examines flows originating from
untrusted locations and thus the produced reports are of
moderate priority. Finally, the whitelisting mode is likely
to generate the largest amount of warnings. Thus, if de-
velopers wish to examine as few locations as possible, e.g.,
due to limited available time for performing code auditing,
they can first examine the reports generated by IntFlow in
the sensitive mode, and if time permits, the follow with the
blacklisting mode, and so on.

Throughout our evaluation, we noticed that many of the
reports generated by IntFlow follow a particular pattern,
mainly due to code reuse from the side of developers. We
believe that using simple pattern matching and lexical anal-
ysis of the source code, in combination with the reports of
IntFlow, could further increase the accuracy with which Int-
Flow classifies errors as malicious or not—the more the oc-
currences of a particular error, the less likely for this error
to not be developer-intended. We will explore this approach
as part of our future work.

8. CONCLUSION
We have presented IntFlow, a tool that identifies a broad

range of arithmetic errors, and differentiates between actual,
critical errors and developer-intended constructs that rely on
undefined behavior but do not constitute potential vulner-
abilities. IntFlow uses static information flow tracking to
associate flows of interest with erroneous statements, and
greatly reduces false positives without removing checks that
would prevent the detection of critical errors. The results
of our evaluation demonstrate the effectiveness of IntFlow
in distinguishing between the two types of errors, allowing
developers and security analysts to detect and fix critical er-
rors in an efficient manner, without the need to sift through
numerous non-critical developer-intended errors. The signif-
icant reduction in false positives that IntFlow achieves over
IOC, which has been integrated into Clang since version 3.3,
demonstrates the need for arithmetic error protection and
the importance of our contribution.

9. REFERENCES
[1] Clang C language family frontend for LLVM.

http://clang.llvm.org/.

[2] CVE - CVE-2006-3824. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2006-3824.

[3] CWE - 2011 CWE/SANS top 25 most dangerous
software errors. http://cwe.mitre.org/top25/.

[4] CWE - Common Weakness Enumeration.
http://cwe.mitre.org/.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[6] A. Benameur, N. S. Evans, and M. C. Elder.
Minestrone: Testing the soup. In Proceedings of
CSET, Washington, D.C., 2013. USENIX.

[7] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and
D. Song. RICH: Automatically Protecting Against
Integer-Based Vulnerabilities. Proceedings of NDSS,
page 28, 2007.

[8] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs.
OSDI, 2008.

[9] W. Chang, B. Streiff, and C. Lin. Efficient and
extensible security enforcement using dynamic data
flow analysis. Proceedings of the 15th ACM conference
on Computer and communications security, pages
39–50, 2008.

[10] W. Dietz, P. Li, J. Regehr, and V. Adve.
Understanding integer overflow in C/C++. In
Proceedings of ICSE. IEEE Press, June 2012.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART. ACM
Sigplan Notices, 2005.

[12] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh,
D. I. August, and A. D. Keromytis. A general
approach for efficiently accelerating software-based
dynamic data flow tracking on commodity hardware.
In In Proc. of the 19 th NDSS, 2012.

[13] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis. libdft: practical dynamic data flow
tracking for commodity systems. In Proc. of VEE,
2012.

[14] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of CGO. IEEE
Computer Society, Mar. 2004.

[15] C. Lattner, A. Lenharth, and V. Adve. Making
context-sensitive points-to analysis with heap cloning
practical for the real world. In Proceedings of PLDI.
ACM Request Permissions, June 2007.

[16] F. Long, S. Sidiroglou-Douskos, D. Kim, and
M. Rinard. Sound input filter generation for integer
overflow errors. In the 41st ACM SIGPLAN-SIGACT
Symposium, New York, New York, USA, 2014.

[17] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux
programs. pages 67–82, 2009.

[18] S. Moore. thinkmoore/llvm-deps.
https://github.com/thinkmoore/llvm-deps.
(Visited on 06/07/2014).

[19] T. Wang, T. Wei, Z. Lin, and W. Zou. Intscope:
Automatically detecting integer overflow vulnerability
in x86 binary using symbolic execution. In NDSS,
2009.

[20] X. Wang. Fast integer overflow detection.
http://kqueue.org/blog/2012/03/16/
fast-integer-overflow-detection/.

[21] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Improving integer security for systems with
KINT. In Proceedings of OSDI. USENIX Association,
Oct. 2012.

[22] X. Wang, N. Zeldovich, M. F. Kaashoek, and
A. Solar-Lezama. Towards optimization-safe systems.
In the Twenty-Fourth ACM Symposium, pages
260–275, New York, New York, USA, 2013. ACM
Press.

[23] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou.
IntPatch: Automatically fix
integer-overflow-to-buffer-overflow vulnerability at
compile-time. pages 71–86, 2010.

10

http://clang.llvm.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3824
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3824
http://cwe.mitre.org/top25/
http://cwe.mitre.org/
https://github.com/thinkmoore/llvm-deps
http://kqueue.org/blog/2012/03/16/fast-integer-overflow-detection/
http://kqueue.org/blog/2012/03/16/fast-integer-overflow-detection/

	Introduction
	Background
	Integer Errors and Undefined Behavior
	Integer Error Examples

	Approach
	Design and Implementation
	Main Components
	Putting It All Together
	Modes of Operation
	Trusted and Untrusted Inputs
	Sensitive Operations

	Implementation Details
	Pass Characteristics
	Configuration Options

	Evaluation
	Accuracy Evaluation
	Evaluation Using Artificial Vulnerabilities
	Mitigation of Real-world Vulnerabilities
	False Positives Reduction

	Runtime Overhead

	Related Work
	Static Analysis
	Dynamic & Symbolic Execution

	Discussion
	Static Information Flow Tracking
	IntFlow for Runtime Detection
	Fast Integer Error Checking
	False Positives

	Quality of the Produced Reports

	Conclusion
	References

