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Abstract—Internet services and applications have become an
inextricable part of daily life, enabling communication and
the management of personal information from anywhere. To
accommodate this increase in application and data complexity,
web services have moved to a multi-tiered design wherein the web
server runs the application front-end logic and data is outsourced
to a database or file server.

In this paper, we present DoubleGuard, an IDS system that
models the network behavior of user sessions across both the
front-end web server and the back-end database. By monitoring
both web and subsequent database requests, we are able to
ferret out attacks that an independent IDS would not be able to
identify. Furthermore, we quantify the limitations of any multi-
tier IDS in terms of training sessions and functionality coverage.
We implemented DoubleGuard using an Apache web server
with MySQL and lightweight virtualization. We then collected
and processed real-world traffic over a 15-day period of system
deployment in both dynamic and static web applications. Finally,
using DoubleGuard, we were able to expose a wide range of
attacks with 100% accuracy while maintaining 0% false positives
for static web services and 0.6% false positives for dynamic web
services.

I. INTRODUCTION

Web-delivered services and applications have increased in
both popularity and complexity over the past few years. Daily
tasks, such as banking, travel, and social networking, are
all done via the web. Such services typically employ a web
server front-end that runs the application user interface logic,
as well as a back-end server that consists of a database or
file server. Due to their ubiquitous use for personal and/or
corporate data, web services have always been the target of
attacks. These attacks have recently become more diverse, as
attention has shifted from attacking the front-end to exploiting
vulnerabilities of the web applications [6], [5], [1] in order to
corrupt the back-end database system [40] (e.g., SQL injection
attacks [20], [43]). A plethora of Intrusion Detection Systems
(IDS) currently examine network packets individually within
both the web server and the database system. However, there
is very little work being performed on multi-tiered Anomaly
Detection (AD) systems that generate models of network
behavior for both web and database network interactions. In
such multi-tiered architectures, the back-end database server
is often protected behind a firewall while the web servers are
remotely accessible over the Internet. Unfortunately, though
they are protected from direct remote attacks, the back-end
systems are susceptible to attacks that use web requests as a
means to exploit the back-end.

To protect multi-tiered web services, Intrusion detection
systems (IDS) have been widely used to detect known attacks

by matching misused traffic patterns or signatures [34], [30],
[33], [22]. A class of IDS that leverages machine learning can
also detect unknown attacks by identifying abnormal network
traffic that deviates from the so-called “normal” behavior
previously profiled during the IDS training phase. Individually,
the web IDS and the database IDS can detect abnormal
network traffic sent to either of them. However, we found
that these IDS cannot detect cases wherein normal traffic is
used to attack the web server and the database server. For
example, if an attacker with non-admin privileges can log in to
a web server using normal-user access credentials, he/she can
find a way to issue a privileged database query by exploiting
vulnerabilities in the web server. Neither the web IDS nor
the database IDS would detect this type of attack since the
web IDS would merely see typical user login traffic and the
database IDS would see only the normal traffic of a privileged
user. This type of attack can be readily detected if the database
IDS can identify that a privileged request from the web server
is not associated with user-privileged access. Unfortunately,
within the current multi-threaded web server architecture, it is
not feasible to detect or profile such causal mapping between
web server traffic and DB server traffic since traffic cannot be
clearly attributed to user sessions.

In this paper, we present DoubleGuard, a system used to
detect attacks in multi-tiered web services. Our approach can
create normality models of isolated user sessions that include
both the web front-end (HTTP) and back-end (File or SQL)
network transactions. To achieve this, we employ a lightweight
virtualization technique to assign each user’s web session to
a dedicated container, an isolated virtual computing environ-
ment. We use the container ID to accurately associate the web
request with the subsequent DB queries. Thus, DoubleGuard
can build a causal mapping profile by taking both the web
sever and DB traffic into account.

We have implemented our DoubleGuard container architec-
ture using OpenVZ [14], and performance testing shows that
it has reasonable performance overhead and is practical for
most web applications. When the request rate is moderate (e.g.,
under 110 requests per second), there is almost no overhead
in comparison to an unprotected vanilla system. Even in a
worst case scenario when the server was already overloaded,
we observed only 26% performance overhead. The container-
based web architecture not only fosters the profiling of causal
mapping, but it also provides an isolation that prevents future
session-hijacking attacks. Within a lightweight virtualization
environment, we ran many copies of the web server instances



in different containers so that each one was isolated from
the rest. As ephemeral containers can be easily instantiated
and destroyed, we assigned each client session a dedicated
container so that, even when an attacker may be able to
compromise a single session, the damage is confined to the
compromised session; other user sessions remain unaffected
by it.

Using our prototype, we show that, for websites that do
not permit content modification from users, there is a direct
causal relationship between the requests received by the front-
end web server and those generated for the database back-
end. In fact, we show that this causality-mapping model
can be generated accurately and without prior knowledge of
web application functionality. Our experimental evaluation,
using real-world network traffic obtained from the web and
database requests of a large center, showed that we were
able to extract 100% of functionality mapping by using as
few as 35 sessions in the training phase. Of course, we also
showed that this depends on the size and functionality of the
web service or application. However, it does not depend on
content changes if those changes can be performed through a
controlled environment and retrofitted into the training model.
We refer to such sites as “static” because, though they do
change over time, they do so in a controlled fashion that allows
the changes to propagate to the sites’ normality models.

In addition to this static website case, there are web services
that permit persistent back-end data modifications. These
services, which we call dynamic, allow HTTP requests to
include parameters that are variable and depend on user input.
Therefore, our ability to model the causal relationship between
the front-end and back-end is not always deterministic and
depends primarily upon the application logic. For instance,
we observed that the back-end queries can vary based on the
value of the parameters passed in the HTTP requests and the
previous application state. Sometimes, the same application’s
primitive functionality (i.e., accessing a table) can be triggered
by many different web pages. Therefore, the resulting mapping
between web and database requests can range from one to
many, depending on the value of the parameters passed in the
web request.

To address this challenge while building a mapping model
for dynamic web pages, we first generated an individual
training model for the basic operations provided by the web
services. We demonstrate that this approach works well in
practice by using traffic from a live blog where we progres-
sively modeled nine operations. Our results show that we were
able to identify all attacks, covering more than 99% of the
normal traffic as the training model is refined.

II. RELATED WORK

A network Intrusion Detection System (IDS) can be classi-
fied into two types: anomaly detection and misuse detection.
Anomaly detection first requires the IDS to define and char-
acterize the correct and acceptable static form and dynamic
behavior of the system, which can then be used to detect
abnormal changes or anomalous behaviors [26], [48]. The

boundary between acceptable and anomalous forms of stored
code and data is precisely definable. Behavior models are built
by performing a statistical analysis on historical data [31],
[49], [25] or by using rule-based approaches to specify behav-
ior patterns [39]. An anomaly detector then compares actual
usage patterns against established models to identify abnormal
events. Our detection approach belongs to anomaly detection,
and we depend on a training phase to build the correct model.
As some legitimate updates may cause model drift, there are
a number of approaches [45] that are trying to solve this
problem. Our detection may run into the same problem; in
such a case, our model should be retrained for each shift.

Intrusion alerts correlation [47] provides a collection of
components that transform intrusion detection sensor alerts
into succinct intrusion reports in order to reduce the number
of replicated alerts, false positives, and non-relevant positives.
It also fuses the alerts from different levels describing a single
attack, with the goal of producing a succinct overview of
security-related activity on the network. It focuses primar-
ily on abstracting the low-level sensor alerts and providing
compound, logical, high-level alert events to the users. Dou-
bleGuard differs from this type of approach that correlates
alerts from independent IDSes. Rather, DoubleGuard operates
on multiple feeds of network traffic using a single IDS that
looks across sessions to produce an alert without correlating or
summarizing the alerts produced by other independent IDSs.

An IDS such as [42] also uses temporal information to
detect intrusions. DoubleGuard, however, does not correlate
events on a time basis, which runs the risk of mistakenly
considering independent but concurrent events as correlated
events. DoubleGuard does not have such a limitation as it uses
the container ID for each session to causally map the related
events, whether they be concurrent or not.

Since databases always contain more valuable informa-
tion, they should receive the highest level of protection.
Therefore, significant research efforts have been made on
database IDS [32], [28], [44] and database firewalls [21].
These softwares, such as Green SQL [7], work as a reverse
proxy for database connections. Instead of connecting to
a database server, web applications will first connect to a
database firewall. SQL queries are analyzed; if they’re deemed
safe, they are then forwarded to the back-end database server.
The system proposed in [50] composes both web IDS and
database IDS to achieve more accurate detection, and it also
uses a reverse HTTP proxy to maintain a reduced level of
service in the presence of false positives. However, we found
that certain types of attack utilize normal traffics and cannot
be detected by either the web IDS or the database IDS. In
such cases, there would be no alerts to correlate.

Some previous approaches have detected intrusions or vul-
nerabilities by statically analyzing the source code or exe-
cutables [52], [24], [27]. Others [41], [46], [51] dynamically
track the information flow to understand taint propagations and
detect intrusions. In DoubleGuard, the new container-based
web server architecture enables us to separate the different
information flows by each session. This provides a means
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of tracking the information flow from the web server to the
database server for each session. Our approach also does not
require us to analyze the source code or know the application
logic. For the static web page, our DoubleGuard approach does
not require application logic for building a model. However, as
we will discuss, although we do not require the full application
logic for dynamic web services, we do need to know the basic
user operations in order to model normal behavior.

In addition, validating input is useful to detect or prevent
SQL or XSS injection attacks [23], [36]. This is orthogonal to
the DoubleGuard approach, which can utilize input validation
as an additional defense. However, we have found that Double-
Guard can detect SQL injection attacks by taking the structures
of web requests and database queries without looking into the
values of input parameters (i.e., no input validation at the web
sever).

Virtualization is used to isolate objects and enhance security
performance. Full virtualization and para-virtualization are
not the only approaches being taken. An alternative is a
lightweight virtualization, such as OpenVZ [14], Parallels Vir-
tuozzo [17], or Linux-VServer [11]. In general, these are based
on some sort of container concept. With containers, a group of
processes still appears to have its own dedicated system, yet
it is running in an isolated environment. On the other hand,
lightweight containers can have considerable performance
advantages over full virtualization or para-virtualization. Thou-
sands of containers can run on a single physical host. There
are also some desktop systems [37], [29] that use lightweight
virtualization to isolate different application instances. Such
virtualization techniques are commonly used for isolation and
containment of attacks. However, in our DoubleGuard, we
utilized the container ID to separate session traffic as a way
of extracting and identifying causal relationships between web
server requests and database query events.

CLAMP [35] is an architecture for preventing data leaks
even in the presence of attacks. By isolating code at the web
server layer and data at the database layer by users, CLAMP
guarantees that a user’s sensitive data can only be accessed
by code running on behalf of different users. In contrast,
DoubleGuard focuses on modeling the mapping patterns be-
tween HTTP requests and DB queries to detect malicious user
sessions. There are additional differences between these two in
terms of requirements and focus. CLAMP requires modifica-
tion to the existing application code, and the Query Restrictor
works as a proxy to mediate all database access requests.
Moreover, resource requirements and overhead differ in order
of magnitude: DoubleGuard uses process isolation whereas
CLAMP requires platform virtualization, and CLAMP pro-
vides more coarse-grained isolation than DoubleGuard. How-
ever, DoubleGuard would be ineffective at detecting attacks if
it were to use the coarse-grained isolation as used in CLAMP.
Building the mapping model in DoubleGuard would require a
large number of isolated web stack instances so that mapping
patterns would appear across different session instances.

III. THREAT MODEL & SYSTEM ARCHITECTURE

We initially set up our threat model to include our assump-
tions and the types of attacks we are aiming to protect against.
We assume that both the web and the database servers are
vulnerable. Attacks are network-borne and come from the web
clients; they can launch application-layer attacks to compro-
mise the web servers they are connecting to. The attackers can
bypass the web server to directly attack the database server. We
assume that the attacks can neither be detected nor prevented
by the current web server IDS, that attackers may take over the
web server after the attack, and that afterwards they can obtain
full control of the web server to launch subsequent attacks. For
example, the attackers could modify the application logic of
the web applications, eavesdrop or hijack other users’ web
requests, or intercept and modify the database queries to steal
sensitive data beyond their privileges.

On the other hand, at the database end, we assume that
the database server will not be completely taken over by the
attackers. Attackers may strike the database server through
the web server or, more directly, by submitting SQL queries,
they may obtain and pollute sensitive data within the database.
These assumptions are reasonable since, in most cases, the
database server is not exposed to the public and is therefore
difficult for attackers to completely take over. We assume no
prior knowledge of the source code or the application logic
of web services deployed on the web server. In addition, we
are analyzing only network traffic that reaches the web server
and database. We assume that no attack would occur during
the training phase and model building.

A. Architecture & Confinement

Web Server

Database
Server

Client 1 (S1)

Client 2 (S2)

Client 3 (S3)

Rq 1

Rq 2

Rs 3

Rs 1

Rs 2

Rq 3

Database 
Queries

Database 
Replies

Fig. 1. Classic 3-tier Model. The web server acts as the front-end,
with the file and database servers as the content storage back-end.
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Fig. 2. Web server instances running in containers.
All network traffic, from both legitimate users and adver-

saries, is received intermixed at the same web server. If an
attacker compromises the web server, he/she can potentially
affect all future sessions (i.e., session hijacking). Assigning
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each session to a dedicated web server is not a realistic
option, as it will deplete the web server resources. To achieve
similar confinement while maintaining a low performance and
resource overhead, we use lightweight virtualization.

In our design, we make use of lightweight process con-
tainers, referred to as “containers,” as ephemeral, disposable
servers for client sessions. It is possible to initialize thou-
sands of containers on a single physical machine, and these
virtualized containers can be discarded, reverted, or quickly
reinitialized to serve new sessions. A single physical web
server runs many containers, each one an exact copy of the
original web server. Our approach dynamically generates new
containers and recycles used ones. As a result, a single phys-
ical server can run continuously and serve all web requests.
However, from a logical perspective, each session is assigned
to a dedicated web server and isolated from other sessions.
Since we initialize each virtualized container using a read-
only clean template, we can guarantee that each session will
be served with a clean web server instance at initialization. We
choose to separate communications at the session level so that
a single user always deals with the same web server. Sessions
can represent different users to some extent, and we expect the
communication of a single user to go to the same dedicated
web server, thereby allowing us to identify suspect behavior
by both session and user. If we detect abnormal behavior
in a session, we will treat all traffic within this session as
tainted. If an attacker compromises a vanilla web server, other
sessions’ communications can also be hijacked. In our system,
an attacker can only stay within the web server containers that
he/she is connected to, with no knowledge of the existence
of other session communications. We can thus ensure that
legitimate sessions will not be compromised directly by an
attacker.

Figure 1 illustrates the classic 3-tier model. At the database
side, we are unable to tell which transaction corresponds to
which client request. The communication between the web
server and the database server is not separated, and we can
hardly understand the relationships among them. Figure 2
depicts how communications are categorized as sessions and
how database transactions can be related to a corresponding
session. According to Figure 1, if Client 2 is malicious and
takes over the web server, all subsequent database transactions
become suspect, as well as the response to the client. By
contrast, according to Figure 2, Client 2 will only compromise
the VE 2, and the corresponding database transaction set T2

will be the only affected section of data within the database.

B. Building the Normality Model

This container-based and session-separated web server ar-
chitecture not only enhances the security performances but
also provides us with the isolated information flows that are
separated in each container session. It allows us to identify the
mapping between the web server requests and the subsequent
DB queries, and to utilize such a mapping model to detect
abnormal behaviors on a session/client level. In typical 3-
tiered web server architecture, the web server receives HTTP

requests from user clients and then issues SQL queries to the
database server to retrieve and update data. These SQL queries
are causally dependent on the web request hitting the web
server. We want to model such causal mapping relationships
of all legitimate traffic so as to detect abnormal/attack traffic.

In practice, we are unable to build such mapping under a
classic 3-tier setup. Although the web server can distinguish
sessions from different clients, the SQL queries are mixed and
all from the same web server. It is impossible for a database
server to determine which SQL queries are the results of
which web requests, much less to find out the relationship
between them. Even if we knew the application logic of the
web server and were to build a correct model, it would be
impossible to use such a model to detect attacks within huge
amounts of concurrent real traffic unless we had a mechanism
to identify the pair of the HTTP request and SQL queries that
are causally generated by the HTTP request. However, within
our container-based web servers, it is a straightforward matter
to identify the causal pairs of web requests and resulting SQL
queries in a given session. Moreover, as traffic can easily be
separated by session, it becomes possible for us to compare
and analyze the request and queries across different sessions.
Section IV further discusses how to build the mapping by
profiling session traffics.

To that end, we put sensors at both sides of the servers. At
the web server, our sensors are deployed on the host system
and cannot be attacked directly since only the virtualized
containers are exposed to attackers. Our sensors will not be
attacked at the database server either, as we assume that the
attacker cannot completely take control of the database server.
In fact, we assume that our sensors cannot be attacked and
can always capture correct traffic information at both ends.
Figure 2 shows the locations of our sensors.

Once we build the mapping model, it can be used to detect
abnormal behaviors. Both the web request and the database
queries within each session should be in accordance with the
model. If there exists any request or query that violates the
normality model within a session, then the session will be
treated as a possible attack.

C. Attack scenarios

Our system is effective at capturing the following types of
attacks:
Privilege Escalation Attack: Let’s assume that the website
serves both regular users and administrators. For a regular user,
the web request ru will trigger the set of SQL queries Qu; for
an administrator, the request ra will trigger the set of admin
level queries Qa. Now suppose that an attacker logs into the
web server as a normal user, upgrades his/her privileges, and
triggers admin queries so as to obtain an administrator’s data.
This attack can never be detected by either the web server
IDS or the database IDS since both ru and Qa are legitimate
requests and queries. Our approach, however, can detect this
type of attack since the DB query Qa does not match the
request ru, according to our mapping model. Figure 3 shows
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Fig. 3. Privilege Escalation Attack.

Fig. 4. Hijack Future Session Attack.

how a normal user may use admin queries to obtain privileged
information.
Hijack Future Session Attack: This class of attacks is mainly
aimed at the web server side. An attacker usually takes over
the web server and therefore hijacks all subsequent legitimate
user sessions to launch attacks. For instance, by hijacking other
user sessions, the attacker can eavesdrop, send spoofed replies,
and/or drop user requests. A session hijacking attack can be
further categorized as a Spoofing/Man-in-the-Middle attack, an
Exfiltration Attack, a Denial-of-Service/Packet Drop attack, or
a Replay attack.

Figure 4 illustrates a scenario wherein a compromised web
server can harm all the Hijack Future Sessions by not generat-
ing any DB queries for normal user requests. According to the
mapping model, the web request should invoke some database
queries (e.g., a Deterministic Mapping (section IV-A)), then
the abnormal situation can be detected. However, neither a
conventional web server IDS nor a database IDS can detect
such an attack by itself.

Fortunately, the isolation property of our container-based
web server architecture can also prevent this type of attack. As
each user’s web requests are isolated into a separate container,
an attacker can never break into other users’ sessions.
Injection Attack: Attacks such as SQL injection do not re-
quire compromising the web server. Attackers can use existing
vulnerabilities in the web server logic to inject the data or
string content that contains the exploits and then use the web
server to relay these exploits to attack the back-end database.
Since our approach provides a two-tier detection, even if the
exploits are accepted by the web server, the relayed contents
to the DB server would not be able to take on the expected
structure for the given web server request. For instance, since
the SQL injection attack changes the structure of the SQL
queries, even if the injected data were to go through the
web server side, it would generate SQL queries in a different
structure that could be detected as a deviation from the SQL
query structure that would normally follow such a web request.

Web Server

Database
Server

Attacker
4. Privileged
information

1. User request
with Injection

2. DB queries
With injection

3. Privileged
Replies

Injection

Fig. 5. Injection Attack.

Fig. 6. DB Query without causing Web requests.

Direct DB attack: It is possible for an attacker to bypass the
web server or firewalls and connect directly to the database.
An attacker could also have already taken over the web server
and be submitting such queries from the web server without
sending web requests. Without matched web requests for such
queries, a web server IDS could detect neither. Furthermore, if
these DB queries were within the set of allowed queries, then
the database IDS itself would not detect it either. However,
this type of attack can be caught with our approach since we
cannot match any web requests with these queries. Figure 6
illustrates the scenario wherein an attacker bypasses the web
server to directly query the database.

D. DoubleGuard Limitations

In this section, we discuss the operational and detection
limitations of DoubleGuard.
Vulnerabilities Due to Improper Input Processing: Cross
Site Scripting (XSS) is a typical attack method wherein attack-
ers embed malicious client scripts via legitimate user inputs.
In DoubleGuard, all of the user input values are normalized
so as to build a mapping model based on the structures of
HTTP requests and DB queries. Once the malicious user
inputs are normalized, DoubleGuard cannot detect attacks
hidden in the values. These attacks can occur even without
the databases. DoubleGuard offers a complementary approach
to those research approaches of detecting web attacks based
on the characterization of input values [38].
Possibility of Evading DoubleGuard:

Our assumption is that an attacker can obtain “full control”
of the web server thread that she connects to. That is, the
attacker can only take over the web server instance running
in its isolated container. Our architecture ensures that every
client be defined by the IP address and port container pair,
which is unique for each session. Therefore, hijacking an
existing container is not possible because traffic for other
sessions is never directed to an occupied container. If this
were not the case, our architecture would have been similar
to the conventional one where a single web server runs many
different processes. Moreover, if the database authenticates the
sessions from the web server, then each container connects
to the database using either admin user account or non-
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admin user account and the connection is authenticated by
the database. In such case, an attacker will authenticate using
a non-admin account and will not be allowed to issue admin
level queries. In other words, the HTTP traffic defines the
privileges of the session which can be extended to the back-
end database, and a non-admin user session cannot appear to
be an admin session when it comes to back-end traffic.

Within the same session that the attacker connects to, it
is allowed for the attacker to launch “mimicry” attacks. It
is possible for an attacker to discover the mapping patterns
by doing code analysis or reverse engineering, and issue “ex-
pected” web requests prior to performing malicious database
queries. However, this significantly increases the efforts for the
attackers to launch successful attacks. In addition, users with
non-admin permissions can cause minimal (and sometimes
zero) damage to the rest of the system and therefore they have
limited incentives to launch such attacks.

By default, DoubleGuard normalizes all the parameters. Of
course, the choice of the normalization parameters needs to
be performed carefully. DoubleGuard offers the capability of
normalizing the parameters so that the user of DoubleGuard
can choose which values to normalize. For example, we can
choose not to normalize the value “admin” in ‘user = “admin”’.
Likewise, one can choose to normalize it if the administra-
tive queries are structurally different from the normal user
queries, which is common case. Additionally, if the database
can authenticate admin and non-admin users, then privilege
escalation attacks by changing values are not feasible (i.e.,
there is no session hijacking).
Distributed DoS: DoubleGuard is not designed to mitigate
DDoS attacks. These attacks can also occur in the server
architecture without the back-end database.

IV. MODELING DETERMINISTIC MAPPING AND PATTERNS

Due to their diverse functionality, different web applications
exhibit different characteristics. Many websites serve only
static content, which is updated and often managed by a Con-
tent Management System (CMS). For a static website, we can
build an accurate model of the mapping relationships between
web requests and database queries since the links are static and
clicking on the same link always returns the same information.
However, some websites (e.g., blogs, forums) allow regular
users with non-administrative privileges to update the contents
of the served data. This creates tremendous challenges for
IDS system training because the HTTP requests can contain
variables in the passed parameters.

For example, instead of one-to-one mapping, one web
request to the web server usually invokes a number of SQL
queries that can vary depending on type of the request and the
state of the system. Some requests will only retrieve data from
the web server instead of invoking database queries, meaning
that no queries will be generated by these web requests. In
other cases, one request will invoke a number of database
queries. Finally, in some cases, the web server will have some
periodical tasks that trigger database queries without any web
requests driving them. The challenge is to take all of these

cases into account and build the normality model in such a
way that we can cover all of them.

As illustrated in Figure 2, all communications from the
clients to the database are separated by a session. We assign
each session with a unique session ID. DoubleGuard normal-
izes the variable values in both HTTP requests and database
queries, preserving the structures of the requests and queries.
To achieve this, DoubleGuard substitutes the actual values
of the variables with symbolic values. Figure 15 depicts an
example of the normalizations of the captured requests and
queries.

Following this step, session i will have a set of requests,
which is Ri, as well as a set of queries, which is Qi. If the total
number of sessions of the training phase is N , then we have
the set of total web requests REQ and the set of total SQL
queries SQL across all sessions. Each single web request rm
∈ REQ may also appear several times in different Ri where
i can be 1, 2 ... N . The same holds true for qn ∈ SQL.

A. Inferring Mapping Relations

If several SQL queries, such as qn, qp, are always found
within one HTTP request of rm, then we can usually have an
exact mapping of rm → {qn, qp}. However, this is not always
the case. Some requests will result in different queries based
on the request parameters and the state of the web server.
For example, for web request rm, the invoked query set can
sometimes be {qn,qp} or, at other times, {qp} or {qq ,qn,qs}.
The probabilities for these queries are usually not the same.
For 100 requests of rm, the set is at {qn,qp} 75 times, at {qp}
20 times, and at {qq ,qn,qs} only 5 times. In such a case, we
can find the mapping of rm → qp is 100%, with a rm → qn
possibility of 80% and a rm → qs occurrence at 5% of all
cases. We define this first type of mapping as deterministic
and the latter ones as non-deterministic.

Below, we classify the four possible mapping patterns. Since
the request is at the origin of the data flow, we treat each
request as the mapping source. In other words, the mappings
in the model are always in the form of one request to a query
set rm → Qn. The possible mapping patterns are as follows:

Web
Server
Logic

HTTP
Web

Req rm

SQL 
Queries
Set Qn

SQL 
Queries
Set Qp

SQL 
Queries
Set Qq

Web
Server
Logic

HTTP
Web

Req rm

Web
Server
Logic

SQL 
Queries
Set Qn

HTTP
Web

Req rm

Web
Server
Logic

SQL 
Queries
Set Qn

Deterministic Mapping

Empty Query Set

No Matched Request

Non-deterministic Mapping

Fig. 7. Overall representation of mapping patterns.

Deterministic Mapping: This is the most common and
perfectly-matched pattern. That is to say that web request
rm appears in all traffic with the SQL queries set Qn. The
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mapping pattern is then rm → Qn (Qn 6= ∅). For any session
in the testing phase with the request rm, the absence of a query
set Qn matching the request indicates a possible intrusion. On
the other hand, if Qn is present in the session traffic without
the corresponding rm, this may also be the sign of an intrusion.
In static websites, this type of mapping comprises the majority
of cases since the same results should be returned for each time
a user visits the same link.
Empty Query Set: In special cases, the SQL query set may be
the empty set. This implies that the web request neither causes
nor generates any database queries. For example, when a web
request for retrieving an image GIF file from the same web
server is made, a mapping relationship does not exist because
only the web requests are observed. This type of mapping is
called rm → ∅. During the testing phase, we keep these web
requests together in the set EQS.
No Matched Request: In some cases, the web server may
periodically submit queries to the database server in order to
conduct some scheduled tasks, such as cron jobs for archiving
or backup. This is not driven by any web request, similar to the
reverse case of the Empty Query Set mapping pattern. These
queries cannot match up with any web requests, and we keep
these unmatched queries in a set NMR. During the testing
phase, any query within set NMR is considered legitimate.
The size of NMR depends on web server logic, but it is
typically small.
Non-deterministic Mapping: The same web request may
result in different SQL query sets based on input parameters
or the status of the web page at the time the web request is
received. In fact, these different SQL query sets do not appear
randomly, and there exists a candidate pool of query sets (e.g.
{Qn, Qp, Qq ...}). Each time that the same type of web request
arrives, it always matches up with one (and only one) of the
query sets in the pool. The mapping pattern is rm → Qi (Qi

∈ {Qn, Qp, Qq ...}). Therefore, it is difficult to identify traffic
that matches this pattern. This happens only within dynamic
websites, such as blogs or forum sites.

Figure 7 illustrates all four mapping patterns.

B. Modeling for Static Websites

In the case of a static website, the non-deterministic map-
ping does not exist as there are no available input variables
or states for static content. We can easily classify the traffic
collected by sensors into three patterns in order to build the
mapping model. As the traffic is already separated by session,
we begin by iterating all of the sessions from 1 to N . For
each rm ∈ REQ, we maintain a set ARm to record the IDs of
sessions in which rm appears. The same holds for the database
queries; we have a set AQs for each qs ∈ SQL to record all
the session IDs. To produce the training model, we leverage
the fact that the same mapping pattern appears many times
across different sessions. For each ARm, we search for the
AQs that equals the ARm. When ARm = AQs, this indicates
that every time rm appears in a session then qs will also appear
in the same session, and vice versa.

HTTP
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(VE 3)
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SQL
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SQL
Query

Y

Fig. 8. Deterministic Mapping Using Session ID of the Container
(VE).

Given enough samples, we can confidently extract a map-
ping pattern rm → qs. Here, we use a threshold value t so
that if the mapping appears in more than t sessions (e.g., the
cardinality of ARm or AQs is greater than t), then a mapping
pattern has been found. If such a pattern appears less than t
times, this indicates that the number of training sessions is
insufficient. In such a case, scheduling more training sessions
is recommended before the model is built, but these patterns
can also be ignored since they may be incorrect mappings. In
our experiments, we set t to 3, and the results demonstrate
that the requirement was easily satisfied for a static website
with a relatively low number of training sessions. After we
confirm all deterministic mappings, we remove these matched
requests and queries from REQ and SQL respectively. Since
multiple requests are often sent to the web server within a
short period of time by a single user operation, they can be
mapped together to the same AQs. Some web requests that
could appear separately are still present as a unit. For example,
the read request always precedes the post request on the same
web page. During the training phase, we treat them as a single
instance of web requests bundled together unless we observe
a case when either of them appears separately.

Our next step is to decide the other two mapping patterns
by assembling a white list for static file requests, including
JPG, GIF, CSS, etc. HTTP requests for static files are placed
in the EQS set. The remaining requests are placed in REQ;
if we cannot find any matched queries for them, they will also
be placed in the EQS set. In addition, all remaining queries
in SQL will be considered as No Matched Request cases and
placed into NMR.

Figure 8 illustrates the use of the session ID provided by
the container (VE) in order to build the deterministic mapping
between http requests and the database requests. The request
rA has the set ARA of {2,4,5}, which equals to AQY .
Therefore, we can decide a Deterministic Mapping rA → qY .

We developed an algorithm that takes the input of training
dataset and builds the mapping model for static websites. For
each unique HTTP request and database query, the algorithm
assigns a hash table entry, the key of the entry is the request
or query itself, and the value of the hash entry is AR for
the request or AQ for the query respectively. The algorithm
generates the mapping model by considering all three mapping
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patterns that would happen in static websites. The algorithm
below describes the training process.

Algorithm 1 Static Model Building Algorithm.
Require: Training Dataset, Threshold t
Ensure: The Mapping Model for static website

1: for each session separated traffic Ti do
2: Get different HTTP requests r and DB queries q in this session
3: for each different r do
4: if r is a request to static file then
5: Add r into set EQS
6: else
7: if r is not in set REQ then
8: Add r into REQ
9: Append session ID i to the set ARr with r as the key

10: for each different q do
11: if q is not in set SQL then
12: Add q into SQL
13: Append session ID i to the set AQq with q as the key
14: for each distinct HTTP request r in REQ do
15: for each distinct DB query q in SQL do
16: Compare the set ARr with the set AQq

17: if ARr = AQq and Cardinality(ARr) > t then
18: Found a Deterministic mapping from r to q
19: Add q into mapping model set MSr of r
20: Mark q in set SQL
21: else
22: Need more training sessions
23: return False
24: for each DB query q in SQL do
25: if q is not marked then
26: Add q into set NMR
27: for each HTTP request r in REQ do
28: if r has no deterministic mapping model then
29: Add r into set EQS
30: return True

C. Testing for Static Websites

Once the normality model is generated, it can be employed
for training and detection of abnormal behavior. During the
testing phase, each session is compared to the normality
model. We begin with each distinct web request in the session
and, since each request will have only one mapping rule in
the model, we simply compare the request with that rule. The
testing phase algorithm is as follows:

1) If the rule for the request is Deterministic Mapping r
→ Q (Q 6= ∅), we test whether Q is a subset of a query
set of the session. If so, this request is valid, and we
mark the queries in Q. Otherwise, a violation is detected
and considered to be abnormal, and the session will be
marked as suspicious.

2) If the rule is Empty Query Set r → ∅, then the request
is not considered to be abnormal, and we do not mark
any database queries. No intrusion will be reported.

3) For the remaining unmarked database queries, we check
to see if they are in the set NMR. If so, we mark the
query as such.

4) Any untested web request or unmarked database query
is considered to be abnormal. If either exists within a
session, then that session will be marked as suspicious.

In our implementation and experimenting of the static test-
ing website, the mapping model contained the Deterministic
Mappings and Empty Query Set patterns without the No
Matched Request pattern. This is commonly the case for
static websites. As expected, this is also demonstrated in our
experiments in section V.

D. Modeling of Dynamic Patterns

In contrast to static web pages, dynamic web pages allow
users to generate the same web query with different param-
eters. Additionally, dynamic pages often use POST rather
than GET methods to commit user inputs. Based on the
web server’s application logic, different inputs would cause
different database queries. For example, to post a comment to
a blog article, the web server would first query the database to
see the existing comments. If the user’s comment differs from
previous comments, then the web server would automatically
generate a set of new queries to insert the new post into the
back-end database. Otherwise, the web server would reject
the input in order to prevent duplicated comments from being
posted (i.e., no corresponding SQL query would be issued.) In
such cases, even assigning the same parameter values would
cause different set of queries, depending on the previous state
of the website. Likewise, this non-deterministic mapping case
(i.e., one-to-many mapping) happens even after we normalize
all parameter values to extract the structures of the web
requests and queries. Since the mapping can appear differently
in different cases, it becomes difficult to identify all of the one-
to-many mapping patterns for each web request. Moreover,
when different operations occasionally overlap at their possible
query set, it becomes even harder for us to extract the one-
to-many mapping for each operation by comparing matched
requests and queries across the sessions.

Since the algorithm for extracting mapping patterns in static
pages no longer worked for the dynamic pages, we created
another training method to build the model. First, we tried to
categorize all of the potential single (atomic) operations on
the web pages. For instance, the common possible operations
for users on a blog website may include reading an article,
posting a new article, leaving a comment, visiting the next
page, etc. All of the operations that appear within one session
are permutations of these operations. If we could build a
mapping model for each of these basic operations, then we
could compare web requests to determine the basic operations
of the session and obtain the most likely set of queries mapped
from these operations. If these single operation models could
not cover all of the requests and queries in a session, then this
would indicate a possible intrusion.

Interestingly, our blog website built for testing purposes
shows that, by only modeling nine basic operations, it can
cover most of the operations that appeared in the real captured
traffic. For each operation (e.g., reading an article), we build
the model as follows. In one session, we perform only a single
read operation, and then we obtain the set of triggered database
queries. Since we cannot ensure that each user perform only
a single operation within each session in real traffic, we use a
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tool called Selenium [15] to separately generate training traffic
for each operation. In each session, the tool performs only one
basic operation. When we repeat the operation multiple times
using the tool, we can easily substitute the different parameter
values that we want to test (in this case, reading different
articles). Finally, we obtain many sets of queries from one
session and assemble them to obtain the set of all possible
queries resulting from this single operation.

By placing each rm, or the set of related requests Rm,
in different sessions with many different possible inputs, we
obtain as many candidate query sets {Qn, Qp, Qq ...} as
possible. We then establish one operation mapping model
Rm → Qm (Qm = Qn ∪ Qp ∪ Qq ∪ ...), wherein Rm is
the set of the web requests for that single operation and
Qm includes the possible queries triggered by that operation.
Notice that this mapping model includes both deterministic
and non-deterministic mappings, and the set EQS is still used
to hold static file requests. As we are unable to enumerate all
the possible inputs of a single operation (particularly write
type operations), the model may incur false positives.

E. Detection for Dynamic Websites

Once we build the separate single operation models, they
can be used to detect abnormal sessions. In the testing phase,
traffic captured in each session is compared with the model.
We also iterate each distinct web request in the session. For
each request, we determine all of the operation models that
this request belongs to, since one request may now appear in
several models. We then take the entire corresponding query
sets in these models to form the set CQS. For the testing
session i, the set of DB queries Qi should be a subset of the
CQS. Otherwise, we would find some unmatched queries. For
the web requests in Ri, each should either match at least one
request in the operation model or be in the set EQS. If any
unmatched web request remains, this indicates that the session
has violated the mapping model.

For example, consider the model of two single operations
such as Reading an article and Writing an Article. The
mapping models are READ → RQ and WRITE → WQ,
and we use them to test a given session i. For all the
requests in the session, we then find that each of them either
belongs to request set READ or WRITE. (You can ignore
set EQS here). This means that there are only two basic
operations in the session, though they may appear as any of
their permutations. Therefore, the query set Qi should be a
subset of RQ∪WQ, which is CQS. Otherwise, queries exist
in this session that do not belong to either of the operations,
which is inconsistent with the web requests and indicates a
possible intrusion. Similarly, if there are web requests in the
session that belong to none of the operation models, then it
either means that our models haven’t covered this type of
operation or that this is an abnormal web request. According to
our algorithm, we will identify such sessions as suspicious so
that we may have false positives in our detections. We discuss
the false positive detection rate further in Section V.

Host Operating System

Host 
Web

Server
(Dispatcher) VE 1 VE 2

Hardware

VE 3

Web 
Sever 3 Database

Server

Web 
Sever 2

Web 
Sever 1

Client 1 Client 3Client 2

Traffic Capture

Traffic Capture

Fig. 9. The overall architecture of our prototype.

V. PERFORMANCE EVALUATION

We implemented a prototype of DoubleGuard using a web
server with a back-end DB. We also set up two testing
websites, one static and the other dynamic. To evaluate the
detection results for our system, we analyzed four classes of
attacks, as discussed in Section III, and measured the false
positive rate for each of the two websites.

A. Implementation

In our prototype, we chose to assign each user session into
a different container; however this was a design decision.
For instance, we can assign a new container per each new
IP address of the client. In our implementation, containers
were recycled based on events or when sessions time out. We
were able to use the same session tracking mechanisms as
implemented by the Apache server (cookies, mod usertrack,
etc) because lightweight virtualization containers do not im-
pose high memory and storage overhead. Thus, we could
maintain a large number of parallel-running Apache instances
similar to the Apache threads that the server would maintain
in the scenario without containers. If a session timed out, the
Apache instance was terminated along with its container. In
our prototype implementation, we used a 60-minute timeout
due to resource constraints of our test server. However, this
was not a limitation and could be removed for a production
environment where long-running processes are required. Fig-
ure 9 depicts the architecture and session assignment of our
prototype, where the host web server works as a dispatcher.

Initially, we deployed a static testing website using the
Joomla [10] Content Management System. In this static web-
site, updates can only be made via the back-end management
interface. This was deployed as part of our center website in
production environment and served 52 unique web pages. For
our analysis, we collected real traffic to this website for more
than two weeks and obtained 1172 user sessions.

To test our system in a dynamic website scenario, we set up
a dynamic Blog using the Wordpress [18] blogging software.
In our deployment, site visitors were allowed to read, post, and
comment on articles. All models for the received front-end and
back-end traffic were generated using this data.
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Fig. 10. Performance evaluation using http load. The overhead is
between 10.3% to 26.2%

We discuss performance overhead, which is common for
both static and dynamic models, in the following section. In
our analysis, we did not take into consideration the potential
for caching expensive requests to further reduce the end-to-end
latency; this we left for future study.

B. Container Overhead

One of the primary concerns for a security system is its
performance overhead in terms of latency. In our case, even
though the containers can start within seconds, generating a
container on-the-fly to serve a new session will increase the
response time heavily. To alleviate this, we created a pool
of web server containers for the forthcoming sessions akin
to what Apache does with its threads. As sessions continued
to grow, our system dynamically instantiated new containers.
Upon completion of a session, we recycled these containers
by reverting them to their initial clean states.

The overhead of the server with container architecture was
measured using a machine with the following specifications:
4 cores 2.8GHz CPU, 8GB memory, 100MB/s NIC card, and
CentOS 5.3 as the server OS. Our container template used
Ubuntu 8.0.4 with Apache 2.2.8, and PHP 5.2.4. The size of
the template was about 160MB, and Mysql was configured
to run on the host machine. Our experiment showed that it
takes only a few seconds for a container to start up, and our
server can run up to 250 web server instances to form the
pool of containers. Beyond this point, we observed a dramatic
performance downgrade of the web server instances.

We evaluated the overhead of our container-based server
against a vanilla web server. In order to measure throughput
and response time, we used two web server benchmark tools:
http load [9] and autobench [4]. The testing website was
the dynamic blog website, and both vanilla web server and
the container-based web server connected to the same Mysql
database server on the host machine. For the container-based
server, we maintained a pool of 160 web server instances on
the machine.

For the http load evaluation, we used the rate of 5 (i.e., it
emulated 5 concurrent users). We tested under the parameters
of 100, 200, and 400 total fetches, as well as 3 and 10
seconds of fetches. For example, in the 100-fetches bench-
mark, http load fetches the URLs as fast as it can 100 times.
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Fig. 11. Performance evaluation using autobench.

Similarly, in the 10 seconds benchmark, http load fetches the
URLs as fast as it can during the last 10 seconds. We picked
15 major URLs of the website and tested them against both
servers. Figure 10 shows our experiment results.

The value of fetches per second in the http load results is
the most important indicator to reflect web server throughput
performance. From the figure, we can observe that the over-
head varied from 10.3% to 26.2%, under the full working load.
When we put the parameters at 3 and 10 seconds, the overhead
was about 23%.

We also tested using autobench, which is a Perl script
wrapper around httperf [8]. It can automatically compare
the performance of two websites. We tested demanding rate
ranging from 10 to 190, which means that a series of tests
started at 10 requests per second and increased by 20 requests
per second until 190 requests per second were being requested;
any responses that took longer than 10 seconds to arrive were
counted as errors. We compared the actual requests rates and
the replay rates for both servers.

Figure 11 shows that when the rate was less than 110
concurrent sessions per second, both servers could handle re-
quests fairly well. Beyond that point, the rates in the container-
based server showed a drop: for 150 sessions per second, the
maximum overhead reflected in the reply rate was around 21%
(rate of 130). Notice that 21% was the worst case scenario
for this experiment, which is fairly similar to 26.2% in the
http load experiment. When the server was not overloaded,
and for our server this was represented by a rate of less than
110 concurrent sessions per second, the performance overhead
was negligible.

Figure 12 depicts the time needed for starting a container.
As we opened 50 containers in a row, the average time was
about 4.2 seconds.

C. Static website model in training phase

For the static website, we used the algorithm in Section IV-B
to build the mapping model, and we found that only the
Deterministic Mapping and the Empty Query Set Mapping
patterns appear in the training sessions. We expected that
the No Matched Request pattern would appear if the web
application had a cron job that contacts back-end database
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Fig. 13. False Positives vs Training Time in Static Website.

server; however, our testing website did not have such a cron
job. We first collected 338 real user sessions for a training
dataset before making the website public so that there was no
attack during the training phase.

We used part of the sessions to train the model and all the
remaining sessions to test it. For each number on the x-axis
of Figure 13, we randomly picked the number of sessions
from the overall training sessions to build the model using the
algorithm, and we used the built model to test the remaining
sessions. We repeated each number 20 times and obtained the
average false positive rate (since there was no attack in the
training dataset). Figure 13 shows the training process. As
the number of sessions used to build the model increased,
the false positive rate decreased (i.e., the model became more
accurate). From the same figure, we can observe that after
taking 35 sessions, the false positive rate decreased and stayed
at 0. This implies that for our testing static website, 35 sessions
for training would be sufficient to correctly build the entire
model. Based on this training process accuracy graph, we can
determine a proper time to stop the training.

D. Dynamic modeling detection rates

We also conducted model building experiments for the
dynamic blog website. We obtained 329 real user traffic
sessions from the blog under daily workloads. During this
7-day phase, we made our website available only to internal
users to ensure that no attacks would occur. We then generated
20 attack traffic sessions mixed with these legitimate sessions,

Single Operation No. of requests No. of queries
Read an article 3 23
Post an article 10 49
Make Comment to an article 2 9
Visit next page 2 18
List articles by categories 3 19
List articles by posted months 3 16
Read RSS feed 1 2
Cron jobs 1 11
Visit by page number 2 18

TABLE I
SINGLE OPERATION MODELS EXAMPLE

and the mixed traffic was used for detection.
The model building for a dynamic website is different from

that for a static one. We first manually listed 9 common
operations of the website, which are presented in Table I. To
build a model for each operation, we used the automatic tool
Selenium [15] to generate traffic. In each session, we put only
a single operation, which we iterated 50 times with different
values in the parameters. Finally, as described in Section IV-D,
we obtained separate models for each single operation. We
then took the built models and tested them against all 349
user sessions to evaluate the detection performance. Figure 14
shows the ROC curves for the testing results. We built our
models with different numbers of operations, and each point on
the curves indicates a different Threshold value. The threshold
value is defined as the number of HTTP requests or SQL
queries in a session that are not matched with the normality
model. We varied the threshold value from 0 to 30 during
the detection. As the ROC curves depict, we could always
achieve a 100% True Positive Rate when doing strict detection
(threshold of 0) against attacks in our threat model. With a
more accurate model, we can reach 100% sensitivity with a
lower False Positive rate. The nature of False Positives comes
from the fact that our manually extracted basic operations
are not sufficient to cover all legitimate user behaviors. In
figure 14, if we model 9 basic operations, we can reach 100%
Sensitivity with 6% False Positive rate. In the case of 23 basic
operations, we achieve the False Positive rate of 0.6%. This
is part of the learning process illustrated in this paper, by
extending the learning step to include more operations we
can create a more robust model and further reduce the false
positives.

E. Attack Detection

Once the model is built, it can be used to detect malicious
sessions. For our static website testing, we used the production
website, which has regular visits of around 50-100 sessions per
day. We collected regular traffic for this production site, which
totaled 1172 sessions.

For the testing phase, we used the attack tools listed in
Table II to manually launch attacks against the testing website,
and we mixed these attack sessions with the normal traffic
obtained during the training phase. We used the sqlmap [16],
which is an automatic tool that can generate SQL injection
attacks. Nikto [13], a web server scanner tool that performs

11



 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Tr
u
e
 P
o
si
ti
ve
 R
at
e
 (
Se
n
si
ti
vi
ty
)

False Positive Rate (1 ‐ Specificity)

23 Models 18 Models 9 Models 7 Models 5 Models

Fig. 14. ROC curves for dynamic models.

comprehensive tests, and Metasploit [12] were used to gener-
ate a number of web server-aimed http attacks (i.e., a hijack
future session attack). We performed the same attacks on
both DoubleGuard and a classic 3-tier architecture with a
network IDS at the web server side and a database IDS
at the database side. As there is no popular anomaly-based
open source network IDS available, we used Snort [39] as
the network IDS in front of the web server, and we used
GreenSQL as the database IDS. For Snort IDS, we downloaded
and enabled all of the default rules from its official website.
We put GreenSQL into database firewall mode so that it would
automatically whitelist all queries during the learning mode
and block all unknown queries during the detection mode.
Table II shows the experiment results where DoubleGuard
was able to detect most of the attacks and there were 0 false
positives in our static website testing.

Furthermore, we performed the same test for the dynamic
blog website. In addition to the real traffic data that we
captured for plotting the ROC curves, we also generated 1000
artificial traffic sessions using Selenium [15] and mixed the
attack sessions together with all of them. As expected, the
models for the dynamic website could also identify all of the
same attack sessions as the static case. In the following section,
we will discuss the experiment results in Table II in more detail
based on these four attack scenarios in Section III-C.

1) Privilege Escalation Attack: For Privilege Escalation
Attacks, according to our previous discussion, the attacker
visits the website as a normal user aiming to compromise
the web server process or exploit vulnerabilities to bypass
authentication. At that point, the attacker issues a set of
privileged (e.g., admin-level) DB queries to retrieve sensitive
information. We log and process both legitimate web requests
and database queries in the session traffic, but there are no
mappings among them. IDSs working at either end can hardly
detect this attack since the traffic they capture appears to
be legitimate. However, DoubleGuard separates the traffic by

Operation Snort GSQL DG
Privilege Escalation (WordPress Vul) No No Yes
Web Server aimed attack (nikto) Yes No Yes
SQL Injection (sqlmap) No Yes Yes
DirectDB No No Yes
linux/http/ddwrt cgibin exec∗ No No Yes
linux/http/linksys apply cgi∗ No No Yes
linux/http/piranha passwd exec∗ No No Yes
unix/webapp/oracle vm agent utl∗ No No Yes
unix/webapp/php include∗ Yes No Yes
unix/webapp/php wordpress lastpost∗ No No Yes
windows/http/altn webadmin∗ No No Yes
windows/http/apache modjk overflow ∗ No No Yes
windows/http/oracle9i xdb pass∗ No No Yes
windows/http/maxdb webdbm database∗ No No Yes

TABLE II
DETECTION RESULTS FOR ATTACKS (GSQL STANDS FOR

GREENSQL, AND DG STANDS FOR DOUBLEGUARD, ∗ INDICATES
ATTACK USING METASPLOIT)

sessions. If it is a user session, then the requests and queries
should all belong to normal users and match structurally. Using
the mapping model that we created during the training phase,
DoubleGuard can capture the unmatched cases.

WordPress [18] 2.3.1 had a known privilege escalation
vulnerability. As described in [19], there was a vulnera-
ble check “if (strpos($ SERVER[‘PHP SELF’], ‘wp-admin/’)
!== false ) $this->is admin = true;” that used the PHP str-
pos() function to check whether the $ SERVER[‘PHP SELF’]
global variable contained the string “wp-admin/”. If the
strpos() function found the “wp-admin/” string within the
$ SERVER[‘PHP SELF’] variable, it would return TRUE,
which would result in the setting of the “is admin” value to
true. This ultimately granted the user administrative rights to
certain portions of the web application. The vulnerable code
was corrected to “if (is admin()) $this->is admin = true;” in
a later version, which added a function to determine whether
the user has administrative privilege. With the vulnerable
code, an unauthorized user could input a forged URL like
“http://www.myblog.com/index.php/wp-admin/” so as to set
the value of variable $this->is admin to TRUE. This would
allow the unauthorized user to access future, draft, or pending
posts that are administrator-level information.

According to our experimental results, DoubleGuard is
able to identify this class of attacks because the captured
administrative queries do not match any captured HTTP re-
quest. In addition, the crafted URLs also violate the mapping
model of DoubleGuard, triggering an alert. In contrast, Snort
fails to generate any alert upon this type of attack, as does
GreenSQL. There are other privilege escalation vulnerabilities,
such as the ones listed in NVD [2], [3], which prevent both
a network IDS like Snort or a database IDS from detecting
attacks against these vulnerabilities. However, by looking at
the mapping relationship between web requests and database
queries, DoubleGuard is effective at capturing such attacks.

2) Hijack Future Session Attack (Web Server aimed attack):
Out of the four classes of attacks we discuss, session hijacking
is the most common, as there are many examples that exploit
the vulnerabilities of Apache, IIS, PHP, ASP, and cgi, to name
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Fig. 15. A trained mapping from web request to database queries

a few. Most of these attacks manipulate the HTTP requests to
take over the web server. We first ran Nikto. As shown in our
results, both Snort and DoubleGuard detected the malicious
attempts from Nikto. As a second tool, we used Metasploit
loaded with various HTTP based exploits. This time, Snort
missed most of these attack attempts, which indicates that
Snort rules do not have such signatures. However, Double-
Guard was able to detect these attack sessions. Here, we point
out that most of these attacks are unsuccessful, and Double-
Guard captured these attacks mainly because of the abnormal
HTTP requests. DoubleGuard can generate two classes of
alerts. One class of alerts is generated by sessions whose traffic
does not match the mapping model with abnormal database
queries. The second class of alerts is triggered by sessions
whose traffic violates the mapping model but only in regards
to abnormal HTTP requests; there is no resulting database
query. Most unsuccessful attacks, including 404 errors with no
resulting database query, will trigger the second type of alerts.
When the number of alerts becomes overwhelming, users can
choose to filter the second type of alerts because it does not
have any impact on the back-end database. Last, GreenSQL
cannot detect these attacks.

DoubleGuard is not designed to detect attacks that exploit
vulnerabilities of the input validation of HTTP requests. We
argue that, if there is no DB query, this class of attacks cannot
harm other sessions through the web server layer because
of the isolation provided by the containers. However, as we
pointed out in Section III-D, XSS cannot be detected nor
mitigated by DoubleGuard since the session hijacking does
not take place at the isolated web server layer.

3) Injection Attack: Here we describe how our approach
can detect the SQL injection attacks. To illustrate with an ex-
ample, we wrote a simple PHP login page that was vulnerable
to SQL injection attack. As we used a legitimate username and
password to successfully log in, we could include the HTTP
request in the second line of Figure 15.

We normalized the value of ‘admin’ and ‘123456’, and
repeated the legitimate login process a few times during the
training phase. The mapping model that was generated is
shown in Figure 15 (S stands for a string value), where the
generalized HTTP request structure maps to the following
SQL queries. After the training phase, we launched an SQL
injection attack that is shown in Figure 16. Note that the
attacker was not required to know the user name and password
because he/she could use an arbitrary username the password
1’ or ’1=1, which would be evaluated as true.

The HTTP request from the SQL injection attacker would
look like the second line in Figure 16. The parameter shown

Abno rma l HTT P request cadt in d etecting p hase : 
GET : /sqlinjection . php?u sername =guess& 

(p asswo r d 1 %2 '7+o r+ %2 '71 %3Dl ) 

Generali zed caput red HTTP request : 
GET : /sqlinjection . php?u sername = S& p asswo r d = S 

Generali zed caput red DB query : 
SE LECT * FROM use r s WHERE username=I S ' AND 

(p as sword - ' S ' o r ' S ' ) 
• • • 

Fig. 16. The resulting queries of SQL injection attack.

in the box is the injected content. After normalizing all of
the values in this HTTP request, we had the same HTTP
request as the one in Figure 15. However, the database queries
we received in Figure 16 (shown in box) do not match the
deterministic mapping we obtained during our training phase.

In another experiment, we used sqlmap [16] to attack
the websites. This tool tried out all possible SQL injection
combinations as a URL and generated numerous abnormal
queries that were detected by DoubleGuard. GreenSQL was
also effective at detecting these attacks, which shows its ability
to detect SQL injection attacks. Regarding Snort, although it
is possible to write user-defined rules to detect SQL injec-
tion attack attempts, our experiments did not result in Snort
reporting any SQL injection alerts.

SQL injection attacks can be mitigated by input valida-
tion. However, SQL injection can still be successful because
attackers usually exploit the vulnerability of incorrect input
validation implementation, often caused by inexperienced or
careless programmers or imprecise input model definitions. We
establish the mappings between HTTP requests and database
queries, clearly defining which requests should trigger which
queries. For an SQL injection attack to be successful, it must
change the structure (or the semantics) of the query, which
our approach can readily detect.

4) Direct DB attack: If any attacker launches this type of
attack, it will easily be identified by our approach. First of all,
according to our mapping model, DB queries will not have
any matching web requests during this type of attack. On the
other hand, as this traffic will not go through any containers,
it will be captured as it appears to differ from the legitimate
traffic that goes through the containers. In our experiments,
we generated queries and sent them to the databases without
using the web server containers. DoubleGuard readily captured
these queries. Snort and GreenSQL did not report alerts for
this attack.

VI. CONCLUSION

We presented an intrusion detection system that builds mod-
els of normal behavior for multi-tiered web applications from
both front-end web (HTTP) requests and back-end database
(SQL) queries. Unlike previous approaches that correlated
or summarized alerts generated by independent IDSes, Dou-
bleGuard forms a container-based IDS with multiple input
streams to produce alerts. Such correlation of different data
streams provides a better characterization of the system for
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anomaly detection because the intrusion sensor has a more
precise normality model that detects a wider range of threats.

We achieved this by isolating the flow of information from
each web server session with a lightweight virtualization.
Furthermore, we quantified the detection accuracy of our
approach when we attempted to model static and dynamic web
requests with the back-end file system and database queries.
For static websites, we built a well-correlated model, which
our experiments proved to be effective at detecting different
types of attacks. Moreover, we showed that this held true
for dynamic requests where both retrieval of information and
updates to the back-end database occur using the web-server
front end. When we deployed our prototype on a system
that employed Apache web server, a blog application and a
MySQL back-end, DoubleGuard was able to identify a wide
range of attacks with minimal false positives. As expected, the
number of false positives depended on the size and coverage
of the training sessions we used. Finally, for dynamic web
applications, we reduced the false positives to 0.6%.
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