Large-Scale Evaluation of a Vulnerability
Analysis Framework

Nathan S. Evans
Symantec Research Labs
Herndon, VA
nathan_evans @symantec.com

Abstract—Ensuring that exploitable vulnerabilities do
not exist in a piece of software written using type-unsafe
languages (e.g., C/C++) is still a challenging, largely un-
solved problem. Current commercial security tools are
improving but still have shortcomings, including limited de-
tection rates for certain vulnerability classes and high false-
positive rates (which require a security expert’s knowledge
to analyze). To address this there is a great deal of ongoing
research in software vulnerability detection and mitiga-
tion as well as in experimentation and evaluation of the
associated software security tools. We present the second-
generation prototype of the MINESTRONE architecture
along with a large-scale evaluation conducted under the
TARPA STONESOUP program. This second evaluation
includes improvements in the scale and realism of the
test suite with real-world test programs up to 200+KLOC.
This paper presents three main contributions. First, we
show that the MINESTRONE framework remains a useful
tool for evaluating real-world software for security vulner-
abilities. Second, we enhance the existing tools to provide
detection of previously omitted vulnerabilities. Finally, we
provide an analysis of the test corpus and give lessons
learned from the test and evaluation.

I. INTRODUCTION

Software security is, or should be, one of the most
important concerns for development teams. As such,
many secure development methodologies have arisen [[1]],
[2]. While these methods prevent a number of naive mis-
takes they can never prevent all vulnerabilities. Software
companies rely extensively on vulnerability detection
tools [3], [4] to help test software for security vulner-
abilities. These tools significantly reduce the number of
bugs and are fine grained. However, they are plagued by
a large number of false positives, which requires expert
domain knowledge to identify real vulnerabilities. The
effectiveness of existing commercial tools is limited: a
study by the NSA [5] demonstrated that the combination
of five vulnerability detection tools against a C and C++
test suite left 40% of the vulnerabilities unidentified.

MINESTRONE [6] is a software vulnerability testing
framework for C and C++ languages. It is a hybrid
framework combining multiple tailored detection tools
that works on both source code and binaries and provides
an architecture for replicated execution and confinement.

Azzedine Benameur
Symantec Research Labs
Herndon, VA
azzedine_benameur @symantec.com

Matthew C. Elder
Symantec Research Labs
Herndon, VA
matthew_elder @symantec.com

Previous experimentation using an independent test and
evaluation suite demonstrated MINESTRONE'’s effec-
tiveness at detecting two types of vulnerabilities: mem-
ory corruption and null pointer errors [7]. Research on
MINESTRONE and experimentation with an improved
test suite has continued and is described in this paper.
In particular, the MINESTRONE prototype addresses
and is tested against four vulnerability types now (the
first two are new): number handling, resource drain,
memory corruption, and null pointer errors. The test suite
improvements include the usage of real-world programs
for testing, which enables testing against much larger,
more realistic test programs: from IKLOC in [7] to
200+KLOC in the current paper.

The remainder of the paper is organized as follows.
First, we present related work. Next, we detail our
methodology and the test suite used for our experiment
and present the experimental setup used for evaluation of
our framework. We then present and discuss the results
and improvements we have made to the current tech-
nologies to increase detection of vulnerabilities. Finally,
we share our lessons learned and conclude.

II. RELATED WORK

There are a number of existing commercial tools for
finding vulnerabilities in source code. Previous studies
found that these tools have significant gaps in detection
capabilities across the tools and there is little overlap
in the detection capabilities of the tools [5]. The end
result is that in practice an organization needs to run as
many different vulnerability detection tools as possible
in order to get the best detection coverage. Another com-
mon drawback of vulnerability detection tools, especially
those based on static analysis, is the high rate of false
positive detections.

Symbolic execution tools [8] can be used to identify
software bugs or vulnerabilities. While their results are
fine grained they have proven to be hard to use with
real-world programs [7] and suffer from a huge state
exploration problem.

Fuzzing frameworks [9]], [10] are used to test the
robustness of a program but can also be used to identify
bugs or vulnerabilities. They generally reveal major bugs
that lead to a program crash but fail to identify fine-
grained vulnerabilities.

The Common Weakness Enumeration (CWE) Initia-
tive [L1] is a community-developed effort aimed at
maintaining a list of well-known software vulnerabilities.
CWEs from this list are used by the STONESOUP test
and evaluation team as a means of grouping vulnera-
bilities into weakness classes, which are tested against
MINESTRONE during test and evaluation.

III. HYPOTHESIS, METHODOLOGY, AND TEST SUITE
A. Hypothesis and Methodology

The primary hypothesis that we test in this work is that
the MINESTRONE framework, composed of multiple
detection technologies combined with I/O redirection,
can mitigate four different classes of common software
weaknesses with a detection rate of 80%. The four soft-
ware weakness classes that we test are memory corrup-
tion, null pointer, resource drain, and number handling
errors. Mitigation, in the context of this research and as
defined by the funding program, is defined in a particular
manner as described in the following paragraph and
described in more detail in [7]. The target detection rate
of 80% in our hypothesis was set as the performance
goal of the funding program.

Our methodology is straightforward and summarized
here; for full details of the test infrastructure, test arti-
facts, and test result descriptions, please refer to [7]. In
short, we were provided (by the project’s independent
test and evaluation team) a testing architecture comprised
of a test manager and a number of test harnesses. The
MINESTRONE framework is integrated into each indi-
vidual test harness, which connects to the test manager
to retrieve test cases to run. Each test case is comprised
of both good and bad I/O pairs. The test harness runs
each of these pairs, without knowing whether they are
good or bad, and returns the result of each I/O pair to
the test manager. This result includes whether or not
MINESTRONE detected a vulnerability, and the results
and side effects of program execution. Only if all good
I/O pairs are not reported as “bad” and bad I/O pairs are
reported as “bad” does the test case count as correctly
“rendered unexploitable”.

A secondary hypothesis that we test is that two im-
portant improvements that we made to the underlying
MINESTRONE technologies can improve our detection
rates for particular memory corruption CWEs.

For the results presented in this paper, we report on
the test results that we achieved during the full test and
evaluation, and then selectively report on the results of
our technological improvements.

B. Test Suite

The test suite chosen for the second test and evaluation
differs from the first test suite in a number of important
ways. The first test suite was made up of a number of
small, manufactured test cases. The vulnerabilities were
hand written and hand injected into the code. For this
reason, the test cases were limited in number (340 total)
and littered with unintended vulnerabilities and program
errors that limited the veracity of the evaluation.

The test suite for the second test and evaluation was
made up of real-world open source projects ranging in
size from tens of thousands to hundreds of thousands
of lines of code. Choosing to use relatively large open
source projects has a number of advantages over small
hand written test cases. First, these projects usually have
many contributors, and are open for scrutiny by the
public. This generally leads to more testing, reducing
the number of unintended program errors and vulnera-
bilities. Second, these code bases are large enough that
vulnerabilities can be injected in a large number of
places, allowing the input required to trigger the seeded
code to be variegated and thus more thoroughly evaluate
the detection technologies. Finally, using extant software
allows the test and evaluation team to focus on creating
realistic vulnerabilities and spend less time developing
contrived test cases.

Another major change made for the second test and
evaluation was the automatic seeding of vulnerabilities
using a source rewriting framework called ROSE [12].
One main goal from TARPA was to have a test corpus
where the vulnerabilities were automatically injected in
different regions of the code base, so that performers
would not be able to predict that a certain modified piece
of code contained a vulnerability simply based on where
it was located. ROSE provided the ability to combine
vulnerabilities and base programs in virtually infinite
combinations. Lastly, ROSE was used to obfuscate the
base programs so that simply comparing the original
did not reveal whether or not a vulnerability had been
seeded. All in all, ROSE made it so the test corpus was
not limited in size by the engineering effort required to
create a test case (which was the limit in the first test
and evaluation).

Here we list the software used as base programs for
the test and evaluation described in this paper:

e Cherokee a fast and versatile, well-maintained
multi-process web server, over 200KLOC.

o Nginx a web server purpose built for speed, well-
maintained and popular, nearly 200KLOC.

o GNU wget a ubiquitous and full-featured command
line web client, over SOKLOC.

e GNU grep well-known command line tool for
pattern matching on files, nearly 10KLOC.

« zshell popular command interpreter with many fea-
tures, over 150KLOC

o libwww relatively old, unmaintained command line
web client and API, nearly 80KLOC.

o tcpdump widely used packet capture and packet
analysis command line tool, over 200KLOC

IV. EXPERIMENTAL SETUP

MINESTRONE is an architecture that enables the
combination of multiple detection technologies into a
single, integrated system via container-based virtualiza-
tion and I/O redirection technology. The MINESTRONE
framework uses lightweight virtualization technology
(OpenVZ [13]) to isolate various vulnerability detection
and mitigation technologies. A single composer controls
the execution of programs in each of these containers and
I/O redirection is used to replay user input in each of the
containers. (For full details of the MINESTRONE archi-
tecture, we refer the reader to our previous work [7].)

A. Detection Components

In this section we present the core detection technol-
ogy components that comprise MINESTRONE, which
are key to the vulnerability detection capabilities.

DYBOC [14] is a source-to-source transformation tool
that augments the source code to detect stack- and heap-
based buffer overflow and underflow attacks.

REASSURE is an error recovery mechanism that
allows the software to recover from unforeseen errors
or vulnerabilities [15[], [16l]. It reuses existing code
locations that handle certain anticipated errors for unan-
ticipated ones as well.

ResMon is a resource monitoring tool that stops
excessive usage of resources, including file descriptors,
network traffic, CPU, memory, and number of processes.

IOC number handling is a Clang-based tool which
inserts dynamic checks on numerical operations to de-
tect common errors, such as unsafe unsigned-to-signed
conversion and addition/subtraction.

1) Format String Vulnerability Detection: One weak-
ness included in the class of memory corruption test
cases is the uncontrolled format string vulnerability
CWE-134. Attackers can use this weakness to leak stack
addresses; information which can be used to exploit the
program. This vulnerability has been around as long as
the printf family of functions. The issue is that at
compile time (or source code analysis time) the number
of arguments to these functions is known, but if the
format string is variable it is difficult or impossible
to count the number of and type of arguments. When
more arguments are specified than were supplied, the
memory addresses on the stack immediately following

int main() {
printf (‘‘%08x.%08x.%08x.%08x.%08x\n"", 42);
}

Fig. 1. Trivial example of format string vulnerability.

int main() {
safe_printf (”%08x.%08x.%08x.%08x.%08x\n", 42);

/% Implementation of safe version of printf x/
int
safe_printf (int num_args, const char sfmt, ...) {
size_t count_args = parse_format (fmt,
if (count_args > num_args)

fprintf (stderr, “"Format_string._error!\n”);

0, NULL);

Fig. 2. Example of format string solution.

the legitimate arguments are accessed. An example of
code vulnerable to this weakness is given in Figure |If]

The solution to this problem is to combine static
analysis with runtime analysis. Specifically, at or before
compilation, any print f-style functions are augmented
to include the actual number of arguments as the first
argument to safe_printf-style functions, which at
runtime verify that the format string supplied contains
the correct (or fewer) arguments than are available. This
solution was first described in FormatGuard [17]], and we
have implemented a similar solution in MINESTRONE
to prevent these types of vulnerabilities. We demonstrate
the result of the source-to-source transformation of the
program given in Figure |1| and the safe version of the
printf function in Figure [2]

Our implementation uses tools from CIL [18] (de-
scribed in to automatically transform source files
before compiling to replace any of the printf-style
functions with safe_printf versions. The main dif-
ference between the FormatGuard solution and ours is in
the implementation. FormatGuard required the inclusion
of header files that used #DEFINE’s to overload the
built in functions and automatically replace them with
their safe versions. Our implementation uses source code
rewriting to replace these functions, which we believe
makes the protection a bit more flexible (no header
includes or modification is necessary). It also makes
the resulting code more easily readable, as the source
is modified and the safe functions are easily recognized.
FormatGuard also relied on merging the runtime protec-
tion into a custom-built libc library, with the expectation
that all applications running on the system would be built
with the safe versions of the vulnerable functions. In our
case, we simply link each application with a library that

I'This example is contrived; in this case static analysis could easily
detect the problem. Normally the format string would be read from
user input, but we place it here for sake of visibility.

/% Original code x/
void init () {
char bufl[10]; char buf2[10];
memset (bufl, “a’,
memset (buf2, ’b’,

10);
10);

/% Heapify transformed code,
struct init_heap {
char bufl[10]; char buf2[10];

heap variable x/

+
void init () {
struct init_heap =xinit_vars;

init_vars = malloc (sizeof(struct init_heap));
memset (init_vars—>bufl, *a’, 10);
memset (init_vars—>buf2, ’b’, 10);

free (init_vars);

/% Altered heapify transformed code,
struct init_heap_bufl {
char bufl[10];

heap variable x/

struct init_heap_buf2 {
char buf2[10];

+

void init () {
struct init_heap_bufl =xinit_bufl;
struct init_heap_buf2 =xinit_buf2;
init_bufl
init_buf2

= malloc (sizeof(struct init_heap_bufl));
= malloc (sizeof(struct init_heap_buf2));
memset (init_bufl—>bufl, ’a’,
memset (init_buf2-—>buf2, ’b’,

10);
10);

free (init_bufl); free (init_buf2);

Fig. 3. Example of base CIL stack to heap transformation.

includes the protected functions. This can be done as
the program is built, or at runtime with LD_PRELOAD.
Again, this is a small distinction but it makes our version
a bit easier to use as it works with stock versions of libc.

While the FormatGuard concept has been around for
a long time, it has not been widely adopted. Our imple-
mentation and addition to the MINESTRONE framework
significantly increased our detection of these format
string vulnerabilities in the test corpus we were tested
against. These results are detailed in Section

2) Improved Stack-to-Heap Transform: We protect
against stack buffer over/under flows by transforming
every stack buffer allocation to a heap-allocated buffer.
These heap-allocated buffers that were moved from the
stack are then protected by the DYBOC technology,
which wraps memory allocations with guard pages to
detect over and under-flows. In order to achieve this
transformation, we leverage a source transformation
framework called CIL [18]].

Our initial implementation of the stack-to-heap buffer
transformation utilized an existing module in CIL, called
“heapify”. This built-in transformation moves all stack-
allocated arrays per function into a newly created struct
for which a pointer is created. This pointer is then
assigned memory sufficient for the function variables at
the function entry point, and it is free’d upon function
return. A simple example showing the initial code and
the heapify-transformed code is given in Figure [3]

This transformation works fine to protect against
stack corruption, but it unfortunately only moves any
buffer over or under runs to the heap. Thanks to tricks
of modern compilers, the program stack generally has
protections against traditional uses of overflows. For
instance, in the example shown in Figure [3] imagine a
test case which attempts to alter the contents of buf2
by overflowing bufl. On most modern systems, this
overflow will not hit buf2 due to stack alignment

Fig. 4. Example of new CIL stack to heap transformation.

protections. However, with the code transformed to the
heap using the CIL built-in heapify alteration, this type
of overflow will be allowed (and cause the “expected”
functionality). It could be argued that the overflow is
actually mitigated by transforming the source in this way,
as the program is only accessing valid memory inside
of a struct. It is not uncommon to find C code with
known memory offsets directly into structs as opposed
to using member names. We believe that those direct
accesses should be allowed, but that we still need to
protect against the overflow of stack variables.

Our solution is to modify the CIL source to add a
new heapify transformation that makes fine-grained stack
overflows detectable. The implementation is straightfor-
ward: instead of allocating a single struct for all array
variables declared per function, we allocate a struct for
each array variable, regardless of the parent function that
it exists in. An example of the resultant transformed code
(for the same source as in Figure [3) is given in Figure 4]

We combine our modified stack-to-heap transforma-
tion with the heap protection functionality provided by
DYBOC to catch these fine-grained stack overflows.
While this additional step may seem like overkill, we
have found it to enhance our detection of injected stack
overflows in the test corpus used by the independent test
and evaluation team to test the MINESTRONE frame-
work. These improvements are discussed in Section [V-C|

B. Experimental Environment

Our target experimental environment for this test
and evaluation is a 32-bit Linux system with OpenVZ
container virtualization enabled. Each of the detection
components is placed in its own lightweight replica.
Source code (C/C++) is provided per test case.

V. EXPERIMENTAL RESULTS
A. Terminology

The following terminology is used to present results:

‘Weakness Processed Unaltered Base Final
Class Score Score
Memory 90.00% 96.64% 84.35% 88.19%
Corruption (1629/1810) (1558/1629) (1374/1629) (1374/1558)
Null 100% 82.55% 82.55% 100%

Pointer (1530/1530) (1263/1530) (1263/1530) (1263/1263)
Resource 90.56% 72.76% 54.85% 75.38%
Drains (815/900) (593/815) (447/815) (447/593)
Number 90.78% 72.40% 49.78% 68.76%
Handling (1123/1237) (813/1123) (559/1123) (559/813)
TABLE T
SUMMARY OF SCORING RESULTS ON THE MEMORY CORRUPTION
TEST CASES.

Processed: The base stage with no instrumentation
was successful at running the test case.

Unaltered: The test program with instrumentation and
good inputs had the expected output.

Base Score: Percentage of test cases correctly ren-
dered unexploitable for all bad 1/O pairs and the exe-
cution was unaltered for all good I/O pairs, out of all
processed test cases.

Final Score: This score represents the percentage of
test cases for which a technology correctly rendered
unexploitable all bad I/O pairs and the execution was
unaltered for all good 1/O pairs, out of all unaltered test
cases. This is the final score that is used for evaluation,
as the test cases with altered functionality were caused
by errors in test case design, not due to MINESTRONE
altering execution.

B. Detailed Results

Table[l|shows the scoring results for the four weakness
classes evaluated by the MINESTRONE framework. It
gives the combined results incorporating all the detection
technologies. The memory corruption scores are nearly
90%, however some of the weaknesses we expected to
handle were not. We explore why this occurred, and
our solutions, in Section [V-C| The null pointer test
case results are relatively uninteresting. These errors are
almost trivially detected by the REASSURE component,
and after controlling for program alteration due to test
case and evaluation problems we see a clear 100% de-
tection rate. We can also see that the resource drain and
number handling weakness classes had both the lowest
percentage of unaltered execution, and the lowest base
and final scores. The results for the number handling test
cases are well below our target of 80% detection. The
discussion following Tables |I1I| and serves to explain
why this was the case.

The final scores for the resource drain test cases are
good, though it must be noted that the base score is
significantly lower than the final score. Part of the reason
for the 75% detection rate is that the bounds given for
the resource drain test cases were based on a heuristic.
The test and evaluation team used ulimit values in Linux

CWE Processed Unaltered Base Score Final Score
126 79.22% 100% 26.22% 26.22%
(61/77) (61/61) (16/61) (16/61)
127 100% 87.23% 32.97% 37.8%
(94/94) (82/94) (31/94) (31/82)
134 81.03% 94.68% 39.36% 41.57%
(94/116) (89/94) (37/94) (37/89)
TABLE IT

SUMMARY OF MEMORY CORRUPTION TEST CASE RESULTS BY
CWE NUMBER.

CWE Processed Unaltered Base Score Final Score
196 97.36% 70.94% 0% 0%

(148/152) (105/148) (0/148) (0/105)

682 98.98% 71.42% 4.08% 5.71%

(98/99) (70/98) (4/98) (4/70)

839 96.63% 77.39% 11.3% 14.6%

(115/119) (89/115) (13/115) (13/89)
TABLE III

SUMMARY OF NUMBER HANDLING TEST CASE RESULTS BY CWE

NUMBER.

to set the absolute bounds for resources, and the resource
drain detection technology simply used a percentage
of that absolute bound as the condition to catch on.
In many of the undetected test cases, this bound was
not strict enough to catch the injected resource drain.
For the programs with altered functionality, the opposite
problem occurred. For instance, a limit on the number
of file descriptors was set for the program under test.
However, due to our container-based technology, many
more file descriptors were required to execute the test.
While the per-container limit was not reached, the host
limit was, causing execution to fail.

Table [II| gives the breakdown of memory corruption
test case results based on the corresponding CWE num-
ber of the injected vulnerability. We show only those
CWESs where the detection was below 85%. (The other
memory corruption CWEs tested - 120, 124, 129, 170,
415, 416, 590, 761, 785, 805, 806, 822, 824, and 843 -
all had high rates of detection, 87%-100%.) We capture
less than 40% of CWE-126, 127 and 134. CWE-126 is
a buffer over read, and 127 is a buffer under-read. We
expected the DYBOC component to catch these vulnera-
bilities. Upon closer inspection, we discovered that these
are stack based buffer overflows, and as such weren’t
caught due to our lack of a fine-grained stack to heap
transformation. Additionally, CWE-134 covers format
string vulnerabilities, which at the time of initial testing
were not covered by the MINESTRONE framework. We
discuss the improvements after adding our new heapify
and format string functionality in Section [V-C

For most number handling CWEs (194, 195, 197,
and 369) tested, the IOC number handling component
catches nearly 100% of vulnerabilities after excluding
those with altered functionality. Table [Tl shows the three

CWE Processed Unaltered Base Score Final Score Base program Processed Unaltered Base Score Final Score
93.2% 69.79% 34.37% 49.25% 66.66% 0% 0% 0%
789 06/103) (67/9) (33/96) (33/67) ZSHELL 92/138) (0/92) ©092) 0/0)
94.62% 72.72% 2.27% 3.12% 100% 0% 0% 0%
835 (88/93) (64/88) (2/88) (/64) TCPDUMP o715y o127 o127 0/0)
TABLE IV TABLE VI
SUMMARY OF RESOURCE DRAIN TEST CASE RESULTS BY CWE SUMMARY OF RESOURCE DRAIN TEST CASE RESULTS BY BASE
NUMBER TEST CASE
Base program Processed Unaltered Base Score Final Score Base program Processed Unaltered Base Score Final Score
44.31% 71.68% 62.83% 87.65%
ZSHELL 100% 0% 0% 0%
(113255) @®1/113) (71/113) (71/81) GREP ATy N o171 (0/0)
97.56% 94.64% 76.78% 81.13%
CHEROKEE 100% 66.42% 36.42% 54.83%
(280/287) (265/280) (215/280) (215/265) LIBWWW 01400 (93/140) (51/140) (51/93)
TABLE V TABLE VII
SUMMARY OF MEMORY CORRUPTION TEST CASE RESULTS BY BASE SUMMARY OF NUMBER HANDLING TEST CASE RESULTS BY BASE
TEST CASE TEST CASE

CWE:s for which the IOC had a poor detection rate: 196,
682, and 839. The high amount with altered functionality
should also be addressed. A large number of innocuous
numeric conversions exist in the base programs used for
the test and evaluation (for example, setting an unsigned
int to negative 1). In order to deal with these, a whitelist
was created based on the known “allowed” conversions.
However, these whitelists were developed based on a
small number of “good” test cases that we were provided
prior to the test and evaluation. As such, there were many
places where a true positive numerical conversion was
flagged, but counted as altered functionality because it
was considered innocuous.

For resource drain test cases, the detection rate for
most CWEs (401, 459, 674, 771, 773, 774, 775, 834)
tested was good (81%-100%), but in general the number
of test cases with altered functionality was high. This
was largely due to unexpected limits being enforced
in the MINESTRONE environment. In Table [V] we
can see that the resource drain technology performed
abysmally on CWE-835. This CWE is based on an
unterminated infinite loop. In these cases, the program
simply would never terminate. This particular weakness
was not covered by our resource exhaustion detectors.

Figure [V| shows the memory corruption test cases by
base program for those with unexpected performance.
zshell is notable due to the low number of processed
and unaltered test cases. The cause of these problems is
twofold. First, the escaping of backticks and quotation
marks (which we had to pass through multiple other
shell scripts) often was lost before the program was
executed. This caused many of the zshell test cases to
fail to be processed. The second issue was a bug in the
stage 2 (where MINESTRONE was executed) phase of
processing, where an incorrect hostname was given that
caused the test case to fail. Also shown is Cherokee, as
our heap protection failed to build with Cherokee, which

brings down the final score.

Table [VI] shows that the resource drain component
failed to properly run any zshell or tcpdump test cases.
This was caused by the scoring, which compared output
(stdout) for these base programs. The resource drain
component was writing extraneous output, causing the
output to appear altered.

Figure shows two base programs that gave the
number handling component difficulty. grep contained an
unexpected number handling error that we were unable
to whitelist. This caused all of the test cases, both good
and bad, to be detected as an error. As such, all grep test
cases were considered to have altered functionality.

C. Technology Improvements

Sections [V-A2] and [[V-AT] detailed two improvements
made to the MINESTRONE component technologies
for detecting fine-grained stack buffer overflow and
underflows as well as a FormatGuard-inspired format
string protection mechanism. Tables [VIII] and [IX] show
the improved results for the relevant CWEs that covered
stack-based memory corruption (126, 127) and format
string vulnerabilities (134). Note that these test cases also
covered many with the “memory alignment” requirement
discussed in Section Because our memory protection
tools intrinsically will not work with programs that re-
quire sequential memory alignment, these are discarded
for the final results (identified by “no memalign” in the
table). Another interesting point is that due to the build
system for Cherokee, our stack-to-heap transformation
and format string prevention are unable to be applied. In
the case of CWE-134, for instance, 9/10 of the missed
test cases were Cherokee-based. Similarly, 8/13 of the
missed test cases were Cherokee-based for CWE-127
and 6/8 for CWE-126. Thus, we also provide the scores
excluding Cherokee.

CWE Original Original no Heapify = Heapify no Cherokee
Score memalign score memalign excluded
126 26.22% 47.05% 62.12% 83.67% 95.92%
(16/61) (16/34) (41/66) (41/49) (47/49)
127 37.8% 73.80% 37.07% 71.73% 89.13%
(31/82) (31/42) (33/89) (33/46) (41/46)
TABLE VIII

SUMMARY OF IMPROVEMENTS TO SCORES BY FINE GRAINED
BUFFER PROTECTION.

CWE Original Format Cherokee
Score score excluded
134 41.57% 87.17% 98.72%
(37/89) (68/78) (77/78)
TABLE IX

SUMMARY OF IMPROVEMENTS TO SCORES BY FINE GRAINED
BUFFER PROTECTION.

VI. LESSONS LEARNED

In this section we share our experience working with
a large-scale test suite and testing infrastructure.

The test suite we used for our experimentation was
provided by MITRE in the IARPA STONESOUP pro-
gram [19]. However, this time, leveraging the experi-
ences and lessons from [7]], this test suite was devel-
oped using a mature compiler architecture [[12] to inject
vulnerabilities. Efforts were also made to obfuscate the
vulnerable code by using randomly generated variable
names and extensive usage of pointer-to-pointer declara-
tions (up to 15 levels of indirection). While this test suite
was significantly improved in size and quality, it still
suffered from some mistakes that forced the evaluation
to throw out programs with altered functionality.

The following issues were encountered with the test
suite, specific to particular weakness classes, providing
lessons learned for future vulnerability testing efforts.

Memory Layout: 25% (417/1629) of the memory
corruption test cases were discarded due to an incorrect
memory layout assumption. The designers made the
assumption that memory was allocated linearly: meaning
two consecutive malloc calls guaranteed a contiguous
range of memory. There is is no guarantee that con-
secutive malloc calls will return contiguous allocations.
These test cases explicitly checked for contiguous mem-
ory in order to run, which always failed with our primary
memory corruption detection components (which by
design never return contiguous memory segments).

Numerical Errors: Numerical errors are one of the
hardest problems to detect. Sometimes an integer over-
flow is used on purpose by developers. Distinguishing
the programmer’s intent with such a “bug” is hard if not
impossible. The test suite was riddled with operations
undefined by the C standard, which we reported as
vulnerable. This led to a lot of discussion as to what
a false positive was.

Ambiguity in Resource Drains: The resource drain

test cases were particularly troublesome, for a few rea-
sons. The limits used as guidelines for the test and
evaluation were the ulimit values on the system. As
such, the resource drain technology was forced to set
an arbitrary variable percentage of the ulimit value as
the new limit. This was a rather clunky mechanism, and
was thrown off by our multi-container approach, which
had multiple subprocesses using the same base limit in
the host. A better approach would be to specify (via
configuration file) the acceptable limits for the program
under test, so our technology would not be interfered
with by system-wide (or process-wide) limits. An even
better approach would be to allow a training phase,
where some good inputs are provided to figure out a
baseline, which would then be used as a comparison
point by the resource drain technology.

A number of issues were related to the testing infras-
tructure. The testing architecture is, at a high level, made
of two distinct components: the test manager and the
performer’s architecture. The test manager handles the
delivery of test cases, over the network to the performer’s
architecture, as well as scoring. Many of the issues
encountered were related to assumptions made about
the performer’s architecture, and these point to lessons
learned for future vulnerability testing infrastructures and
large-scale experimentation.

Testing Co-Process Results: The test manager ex-
pects the performer’s architecture to report the exe-
cution status after the program under test terminates.
However, in some cases the program under test was
backgrounded and killed after a co-process finished. In
the MINESTRONE framework, the co-process is only
executed once, while I/O redirection is used to replay
its behavior. As such, the reported status (after the co-
process finishes) is only valid for the first component of
the MINESTRONE framework. This is a violation of the
assumption that the program under test would be treated
as a blocking process whose termination indicated a
completed test case run.

Use of Co-Process Binaries: Some test cases required
co-processes to be executed. For example, a TCP server
would require a TCP client to send some message to
it to trigger a vulnerability. The problem was that the
co-processes shipped in compiled binary form instead
of source code. This led to many execution errors as
some of the co-processes required a different libc version
than the one present in the test infrastructure. The testing
infrastructure should provide all dependencies, such as
co-process programs, in source code form.

Hardcoded IP Addresses: A class of network test
cases used hardcoded IP addresses (or localhost) to
reach co-processes (e.g., a web server). This led to
several errors in our architecture where the program
under test runs in a separate container (where the co-

process was not running locally). After discussions with
the test and evaluation team we were able to convince
them to replace hardcoded IP addresses (which limit
portability of the test infrastructure) with hostnames that
allowed us some flexibility and set up simple redirection
with /etc/hosts. However, despite being aware of this
constraint, many of the final test cases included still
exhibited this error.

Scalability: After each test case execution the per-
former’s architecture reports its status to the test manager
and also sends back all the test case execution results
(binaries, buildfiles, logs, etc.). However, our architecture
builds the test cases as many times as we have different
detection technologies, resulting in at least five builds.
This design caused us to need over 10TB just for the
results of the test and evaluation in our off-site testing.
In the end scalability was such an issue that we had to
modify the test harness to delete unimportant files before
sending them to the test manager. During the on-site test
and evaluation this design also caused big problems. The
storage for the test managers, shared over NFS, was
quickly overwhelmed when hundreds of test harnesses
(and multiple test managers) were all running concur-
rently. Their storage was exhausted during a small-scale
dry run before the actual test and evaluation, we do
not know what steps were taken internally to solve the
problem. A better approach would be to identify only
modified files and keep a de-duplicated data store of files.

VII. CONCLUSION

In this paper, we have presented the second-
generation prototype of the MINESTRONE architecture
for software vulnerability detection and mitigation. We
tested our prototype against real-world programs up to
200+KLOC with injected vulnerabilities. We identified
weaknesses in our first-generation prototype and sig-
nificantly improved the detection technology for fine-
grained stack over/under flows as well as format string
vulnerabilities. Our results showed a 100% improvement
in detection of these vulnerabilities in this real-world
test corpus. We also identified and outlined pitfalls and
possible solutions in a large-scale test and evaluation
architecture. In the next phase of the STONESOUP
program, MINESTRONE will be tested on even larger
programs (1000+KLOC), with a larger variety of test
case inputs. In our future work we plan to extend the
prototype to handle concurrency bugs, which are one of
the hardest to detect.

ACKNOWLEDGMENT

This work was supported by the US Air Force through
Contract AFRL-FA8650-10-C-7024. Any opinions, find-
ings, conclusions or recommendations expressed herein
are those of the authors, and do not necessarily reflect
those of the US Government or the Air Force. The

authors would like to thank Angelos Keromytis and the
MINESTRONE team. Acknowledgment is also extended
to the members of MITRE who worked on the test suite
and test infrastructure.

REFERENCES

[1]1 (2010) Microsoft security development lifecycle. [Online].
Available: "http://www.microsoft.com/en-us/download/details.
aspx?displaylang=en&id=12285""

[2] N. R. Mead and T. Stehney, “Security quality requirements
engineering (square) methodology,” in Proceedings of the
2005 Workshop on Software Engineering for Secure Sys-
tems&Mdash; Building Trustworthy Applications, ser. SESS ’05.
ACM, 2005, pp. 1-7.

[3] (2013) Coverity development testing platform.
Available: http://www.coverity.com/

[4] (2013) Hp fortity. [Online]. Available: https://www.fortify.com

[51 J. Merced. (2012) Source code analysis tool evaluation.
[Online]. Available: http://www.iarpa.gov/stonesoup_Merced_.
DHSAWGbrief.pdf;http://www.iarpa.gov/images/files/programs/
stonesoup/Stonesoup_Proposer_Day_Brief.pdf]

[6] A. D. Keromytis, S. J. Stolfo, J. Yang, A. Stavrou, A. Ghosh,
D. Engler, M. Dacier, M. Elder, and D. Kienzle, “The minestrone
architecture combining static and dynamic analysis techniques
for software security,” in Proceedings of the 2011 First SysSec
Workshop, ser. SYSSEC 11, 2011, pp. 53-56.

[71 A.Benameur, N. S. Evans, and M. C. Elder, “Minestrone: Testing
the soup,” in Presented as part of the 6th Workshop on Cyber
Security Experimentation and Test. USENIX, 2013.

[8] C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX conference on
Operating systems design and implementation, ser. OSDI’08,
2008, pp. 209-224.

[9] (2014) Spike. [Online]. Available: https://www.immunitysec.

com/resources-freesoftware.shtml

(2014) The cert basic fuzzing framework (bff). [Online]. Avail-

able: http://www.cert.org/vulnerability-analysis/tools/bff.cfm

(2008) The common weakness enumeration (cwe) initiative.

[Online]. Available: http://cwe.mitre.org/

e. a. Quinlan, D.J. Rose compiler infrastructure. [Online].

Available: http://rosecompiler.org/

(2012) Openvz linux containers.

/Iwww.openvz.org/Main_Page

S. Sidiroglou, G. Giovanidis, and A. D. Keromytis, “A dynamic

mechanism for recovering from buffer overflow attacks,” in

Proceedings of the 8th Information Security Conference (ISC),

2005, pp. 1-15.

G. Portokalidis and A. D. Keromytis, “Reassure: A self-contained

mechanism for healing software using rescue points,” in In: Pro-

ceedings of the 6th International Workshop on Security (IWSEC),

2011, pp. 16-32.

S. Sidiroglou, O. Laadan, A. D. Keromytis, and J. Nieh, “Using

rescue points to navigate software recovery (short paper),” in

Proceedings of the IEEE Symposium on Security & Privacy

(S&P), 2007, pp. 273-278.

C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman,

M. Frantzen, and J. Lokier, “Formatguard: Automatic protection

from printf format string vulnerabilities,” in Proceedings of the

10th Conference on USENIX Security Symposium - Volume 10,

ser. SSYM’01. USENIX Association, 2001, pp. 15-15.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: In-

termediate language and tools for analysis and transformation of

¢ programs,” in Proceedings of the 11th International Conference

on Compiler Construction, ser. CC 02, 2002, pp. 213-228.

(2011) Securely taking on new executable software of uncertain

provenance (stonesoup) program. [Online]. Available: http:

/Iwww.1arpa.gov/Programs/sso/STONESOUP/stonesoup.html

[Online].

[10]
[11]
[12]

[13] [Online]. Available: http:

[14]

[15]

[16]

(17]

[18]

[19]

"http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=12285"
"http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=12285"
http://www.coverity.com/
https://www.fortify.com
http://www.iarpa.gov/stonesoup_Merced_DHSAWGbrief.pdf; http://www.iarpa.gov/images/files/programs/stonesoup/Stonesoup_Proposer_Day_Brief.pdf
http://www.iarpa.gov/stonesoup_Merced_DHSAWGbrief.pdf; http://www.iarpa.gov/images/files/programs/stonesoup/Stonesoup_Proposer_Day_Brief.pdf
http://www.iarpa.gov/stonesoup_Merced_DHSAWGbrief.pdf; http://www.iarpa.gov/images/files/programs/stonesoup/Stonesoup_Proposer_Day_Brief.pdf
https://www.immunitysec.com/resources-freesoftware.shtml
https://www.immunitysec.com/resources-freesoftware.shtml
http://www.cert.org/vulnerability-analysis/tools/bff.cfm
http://cwe.mitre.org/
http://rosecompiler.org/
http://www.openvz.org/Main_Page
http://www.openvz.org/Main_Page
http://www.iarpa.gov/Programs/sso/STONESOUP/stonesoup.html
http://www.iarpa.gov/Programs/sso/STONESOUP/stonesoup.html

	Introduction
	Related Work
	Hypothesis, Methodology, and Test Suite
	Hypothesis and Methodology
	Test Suite

	Experimental Setup
	Detection Components
	Format String Vulnerability Detection
	Improved Stack-to-Heap Transform

	Experimental Environment

	Experimental Results
	Terminology
	Detailed Results
	Technology Improvements

	Lessons Learned
	Conclusion
	References

