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I. INTRODUCTION

With the pervasiveness of multicore architectures, multi-
threading is an important - and often necessary - tool when
programming for performance. However, programming with
multiple threads is generally more difficult than programming
for serial execution. Each thread has the potential to contain
any bug of a serial program, and on top of that, the uncertain
interleaving of concurrent threads has the potential for concur-
rency bugs (e.g. data races).

Lu et al. did a survey of concurrency bugs [1], and Yang
et al. has demonstrated that attacks on buggy multithreaded
programs are a real concern [2]. Much of the effort in com-
bating this threat has gone into tools and systems which detect
data races in order to aid debugging [3]–[7]. An alternative
approach is to guide multithreaded programs into memoized
synchronization schedules [8]. This approach does not dwell
on race detection, but rather on removing the nondeterminism
from the portions of multithreaded programs where races
are most likely. However, schedule memoization in its most
automated form is still susceptible to attack whenever the
attacker can trigger a different schedule by changing the input.

We address the threat of concurrency attacks from yet
another angle. Much like the way that address space layout
randomization thwarts attacks that depend on absolute and/or
relative code and data addresses in memory, we propose to
thwart concurrency attacks that depend on specific thread
timing by randomizing the delays between and among threads.
Like the memoization approach described above, we also
focus on the synchronization schedule (the interleaving of the
various threads in a multithreaded program). However, instead
of removing nondeterminism to increase reproducibility, we
attempt to randomize the synchronization schedule to remove
the possibility that the relative timing of two (or more) threads
can be studied and used to craft an attack. For this subset
of concurrency attacks which depend on thread timing, we
hypothesize that random injection of timing delays between
concurrent threads will reduce the chance of any specific
attack’s success. If such an attack can address different thread
timing with correspondingly different input timing, at least
randomization increases the cost to the attacker to determine
the appropriate input timing; moreover, that knowledge is only
useful for one system until the next randomization.

II. PRELIMINARY RESULTS

To motivate the plausibility of our approach, we first tested
the effects of targeted timing delays in buggy multithreaded

43 static inline long do_mmap2(
44 unsigned long addr, unsigned long len,
45 unsigned long prot, unsigned long

flags,
46 unsigned long fd, unsigned long pgoff)
47 {
48 int error = -EBADF;
49 struct file * file = NULL;
50
51 flags &= ˜(MAP_EXECUTABLE |

MAP_DENYWRITE);
52 if (!(flags & MAP_ANONYMOUS))

{
53 file = fget(fd);
54 if (!file)
55 goto out;
56 }
57 udelay(100);
58 down_write(&current->mm->

mmap_sem);
59 error = do_mmap_pgoff(file,

addr, len, prot, flags,
pgoff);

60 up_write(&current->mm->
mmap_sem);

61
62 if (file)
63 fput(file);
64 out:
65 return error;
66 }

Fig. 1. An example targeted timing delay in the CentOS Linux kernel 2.4.21
in function do mmap2 in arch/i386/kernel/sys i386.c, line 57.

code for which we have an exploit script. The CentOS 3.9
kernel (from Linux 2.4.21) contains a critical concurrency
bug that causes a system hang when exploited [9]. The bug
is a deadlock on the mmap semaphore ‘mmap sem’ that is
triggered by a specific interleaving of concurrent threads, one
calling the mmap system call and the other calling the mincore
system call. The Red Hat bug report [10] provides a script
which creates two threads - one that repeatedly calls mincore
in a loop, and another that repeatedly calls mmap in a loop.
By placing calls to usleep() just before the call to down write
on mmap sem in the i386 architecture-specific implementation
of mmap (Figure 1), we were able to alter the timing of the



10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

inserted delay (us)

ex
pl

oi
t−

fr
ee

 e
xe

cu
tio

ns

Fig. 2. The effect of placing targeted timing delays in the (buggy) CentOS
Linux kernel 2.4.21. Delays between 0 and 5,000µs were inserted strategically
to alter concurrent thread timing, and the number of failed exploit script runs
prior to a successful exploit strictly increased with the length of the inserted
delay.

thread interleaving. We observed that the number of exploit
script runs required for a successful exploit strictly increased
with the duration of the sleep inserted (Figure 2).

III. EXPERIMENT

After observing that targeted timing delays reduce the
success rate of at least one concurrency bug exploit, the next
step is to show that randomized timing delays have a similar
effect. Our approach is to rewrite buggy multithreaded binaries,
for which we have exploit scripts in hand, in the following
way:

1) Replace all function calls with jumps to variable-
length NOP loops, different for each function.

2) At the end of these loops, jump to the originally
intended function.

3) Randomize the NOP loop lengths on each rewrite.

In this way, we can change the program timing by introduc-
ing randomness between experiments. In a real-world scenario
this would correspond to program rewrites at boot time, or
some other periodic interval.

If the reduction in exploit success justifies the overhead of
the timing delays, thread timing randomization could be an
important defense against concurrency attacks.
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