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Abstract—Being able to inspect and analyze the operational
state of commodity machines is crucial for modern digital
forensics. Indeed, volatile system state including memory data
and CPU registers contain information that cannot be directly
inferred or reconstructed by acquiring the contents of the non-
volatile storage. Unfortunately, it still remains an open problem
how to reliably and consistently retrieve the volatile machine
state without disrupting its operation. In this paper, we propose
to leverage commercial PCI network cards and the current
x86 implementation of System Management Mode to reliably
replicate the physical memory and critical CPU registers from
commodity hardware. Furthermore, we demonstrate how remote
state replication can be used for semantic reconstruction, where
the analysis of memory structures enables us to interactively
perform forensic analysis of the machine’s memory content.

Index Terms—Live Forensics, Memory Acquisition, SMM-
mode, PCI.

I. INTRODUCTION

Analyzing volatile state information from a live, working
system without disrupting its operation is critical for forensics
because it offers a context for the static, non-volatile data.
Indeed, by extracting the dynamic context, an analyst is
empowered with a wide-range of information: from process
description including currently running and stopped programs
and their physical memory, CPU and Disk cache, network
connections and open files, to operating system state such as
system load, open sockets, and inter-process communication.
This global view of the system state is crucial especially
for stealthy malware that maintains a fully dynamic profile
by operating entirely in memory. Instances of Code Red [1]
and SQL Slammer [2] are two instances of such malcode.
Therefore, being able to unobtrusively acquire the complete
contents of the volatile memory of a computer is a necessary
source of evidence for digital forensic analysis [3], [4], [5].
Currently, the majority forensic analysis tools employ the
operating system, employ dedicated hardware to retrieve the
running state of a system, or require the analysis of memory
traces after shutdown [6].

Nevertheless, it is not trivial to reliably acquire the memory
content of a running system without disrupting its operation.
Many operating systems (OSes) provide software interfaces for
the user or kernel level programs to read specific areas of mem-
ory. However, if the OS itself has already been compromised
or the malware operates on the hypervisor level, the OS cannot

be trusted to provide the correct RAM contents. Rootkits are
notorious for hiding process information from user-land and
sometimes kernel-level programs that read standard memory
structures. Due to these shortcomings, software solutions for
memory acquisition are not reliable. To address this limitation,
researchers [4], [7] have turned their attention to hardware-
based methods. For example, a customized PCI card can be
used to read the physical memory via Direct Memory Access
(DMA).

Unfortunately, using specialized PCI cards to access the
volatile state has still two unresolved challenges. First, PCI
cards can be blocked from access to all the physical RAM
memory. Both Intel and AMD provide technologies, (VT-d [8]
and IOMMU [9] ) to restrict the memory access for peripheral
devices as a security precaution. Although the purpose is to
protect the privileged software from being compromised by
malicious hardware, these technologies also thwart the PCI
dependent tools to monitor the physical memory. Second, it is
difficult to obtain the semantics of a memory dump without
knowing the values of the CPU registers at the time that the
dumb was retrieved. For instance, the interrupt descriptor table
register (IDTR) points to the current interrupt descriptor table
(IDT). Without knowing the value of the IDTR register, an
analyst has to apply heuristic or pattern matching methods to
search for and identify the value of IDTR. Of course, none
of these methods are considered reliable and thus cannot be
used to substantiate a robust forensic analysis. The same holds
for a range of other CPU-derived information including the
control register 3 (CR3), which points to the base address of
the current page table.

To address some of these challenges, we introduce a
firmware assisted method to reliably acquire the memory and
CPU registers. In addition, we propose a memory analysis
framework to assist the forensic investigator with the tedious
task of analyzing the machine state. To that end, we design
the capability to both interactively and automatically examine
the contents of memory, CPU registers, and peripheral state
remotely. We combine a commercial PCI network card (which
is widely available) with the System Management Mode
(SMM) to acquire the memory and CPU registers. SMM is
a special CPU mode besides the protected mode and real-
address mode [10]. The code of SMM, that resides in BIOS,
can check the CPU registers and leverage the commercial PCI



network cards to read the memory. Therefore, we can read
and transmit CPU registers, physical memory, and peripheral
device state.

The memory and CPU information can be either communi-
cated to a remote server to be examined off-line, or analyzed
online (live forensics). For the live analysis mode, we can
guarantee consistency because during SMM the OS enters
and remains in suspended state. While in suspended state the
system view remains untouched when being examined. To
investigate the live memory contents, we propose to implement
a GDB-like server and a GDB stub in SMM, so that it can be
connected with a GDB debugger on another machine via serial
console. The benefit of this SMM based online investigation is
that it can examine the physical memory of user level programs
and kernel code. Since the debugger running in SMM is
isolated from the OS, it is much more reliable than other OS-
based live forensic methods. Even if the whole OS, including
the kernel, is compromised, the SMM is still protected and
can reliably perform the investigation tasks.

II. SMM BACKGROUND

The System Management Mode (SMM) is a separate CPU
mode from the traditional protected and real-address mode. It
provides a transparent mechanism for implementing platform
specific system-control functions, such as power management
and system security. SMM is primarily designed for firmware
or basic input-output system (BIOS). System Management
Mode (SMM) was first introduced in the Intel386 SL and
Intel486 SL processors. It became a standard IA-32 feature in
the Pentium processor [10]. SMM is a separate x86 processor
mode from protected mode or real-address mode.

The motherboard controller is programmed to recognize
many types of events and timeouts to trigger SMM. When
such an event occurs, the chipset asserts the SMM interrupt pin
(SMI#). At the next instruction boundary, the microprocessor
saves its entire state and enters SMM. After the micropro-
cessor’s state has been stored to memory, the special SMM
handler begins to execute. In SMM, the processor switches
to a separate address space, named as system management
RAM (SMRAM). All microprocessor context of the currently
running code is saved in SMRAM. The SMRAM can be made
inaccessible from other CPU operating modes; therefore, it
can act as a trusted storage, sealed from being accessed from
any device or even the CPU (while not in SMM mode).
The RSM instruction is called to exit SMM. RSM reads
the microprocessor state data from the SMRAM and restores
the entire microprocessor state. From now on, the previous
program resumes its execution from where it was interrupted.

Our memory acquisition and analysis system is imple-
mented in the trusted SMM code (called SMRAM). This
secure memory region is an aspect of SMM that it crucial
for the secure and reliable implementation of any inspection
system. Indeed, the SMM code remains locked from all the
non-SMM CPU modes and thus, it can be safely used as a
means of examining the system without any risks of being
modified by a malicious user or program.

III. ARCHITECTURE

The overall architecture of our system is depicted in Fig-
ure 1. The entire system is composed of two computers: one
that is used for analysis and another that is the machine
subjected to inspection. On the right is the target machine
that is being investigated, which includes a dedicated network
card and a serial port. On the left of the figure is the remote
machine that is used by the forensics investigator. These two
machines are connected by a network cable and a serial cable.
The network connection is used for off-line investigation, the
serial connection for on-line investigation.

A. Off-line Investigation

The off-line memory investigation collects the content of the
physical memory and transfers it to the remote server. Then,
the remote investigator can recover the semantic information
(e.g., both user-level processes and kernel modules ) from
the acquired content. When the remote server receives the
acquired content, the OS on the target machine has resumed
its operation. Thus, the current OS context is different from
that when the memory content is acquired.

1) Acquiring Memory: A commercial PCI network card is
used to acquire the physical memory of the target machine.
PCI network cards can read the physical memory through
DMA and then send it out as network packets. However, one
problem of using the commercial network cards is that they
need a driver. Since the drivers normally reside in OS, if the
OS has been compromised by malware, the driver may be
compromised too and cannot be trusted. Some researchers use
a customized PCI card to read the physical memory [4], which
does not need a driver and can overcome the previous problem.
The drawback is that the cost for the customized hardware may
be high and hard to deploy. We propose to use the commercial
network cards without worrying about its drivers. To solve the
driver problem, we put the drivers of the network cards into
the SMM. Since SMM code is trusted and locked, the driver
is not threatened by the malware.

2) Translating Memory: The PCI network card can only
acquire the physical memory of the target machine. To un-
derstand the physical memory, the system must translate it to
virtual memory used by the OS and find out the semantics of
the memory. For that purpose, two CPU registers are critical:
IDTR and CR3. IDTR points to the current IDT, and CR3
points to the base address of the current page table.

CPU registers can be obtained either through a software
based method or a firmware based method. We choose
firmware (BIOS) based method, because it is more reliable. We
use SMM code, which is a part of the BIOS, to read the CPU
registers. As we mentioned in Section II, SMM can obtain
the CPU registers used by the OS running in the protected
mode, because the hardware automatically saves them before
switching to SMM.

3) Challenges: One challenge for off-line investigation is
how to perform it reliably on machines with large amount of
memories. For example, current workstations or servers may
have 4GB, 8GB or even higher amount of physical memory.
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Fig. 1. The architecture of the memory forensics tool.

If we use a 1Gbps network card, then it takes about at least
32 seconds to acquire the 4GB memory, and 64 seconds for
8GB memory. Serial port is not suitable for transmitting the
large off-line data due to its low date rate.

There are two ways to acquire the memory: record the whole
memory in one operation; or record only a portion of the
memory, resume the OS, and then repeat the process until
all the memory is recorded. The first method guarantees the
memory content to be consistent because it freezes the OS
during the process. However, the OS may hang if it is frozen
for a relatively long time, partly because too many hardware
interrupts are lost when frozen. The second method does not
interfere too much to the OS, but the memory acquired during
a relative long period may not be consistent. To improve
the first method, we could use advanced network cards, such
as 10Gbps cards. To improve the second method, we could
only capture the difference between the two snapshots of the
memory. This will dramatically reduce the amount of data
to be recorded. To record the difference, we could mark all
the memory pages as read-only, and then every write to the
memory will trigger an exception. In the exception handler,
the OS records the memory pages to be modified and sends
this information to the SMM. This method introduces some
performance impacts and modifications to the OS. Also, the
exception handler should be protected. SMM can be used to
watch the integrity of the exception handler.

B. On-line Investigation

Although the off-line investigation can get the complete
memory view of the target machine for a given time, some
memory content may not be necessary for the investigation.
For example, if the investigator only wants to check the
OS kernel, the memory occupied by the user level programs
does not need to be recorded or transmitted. Moreover, if the
investigator only wants to check a few variables, most of the
memory dump will be unnecessary. In this situation, it is more
convenient and efficient to use on-line investigation.

In an on-line investigation, the investigator stops the ma-
chine, checks a few memory locations or specific registers,

and then resumes the machine. We use SMM to stop the
machine and get the memory contents. Instead of sending all
the memory to the remote machine, SMM just waits for the
command from the investigator at the remote server. Only a
small number (a few bytes) of memory content will be sent out
when it is requested by the investigator through online analysis
interface. Since this process is similar to a debugging process,
we plan to implement a GDB stub and gdbserver in SMM of
the target machine and connect it with a GDB debugger on
the remote machine. Gdbserver supports both TCP connection
and a serial line connection. For our system, we plan to use
serial connection because of simplicity.

1) Triggering SMM: The first step for online investigation
is to trigger SMM to freeze the machine. This can be done in
several ways. For example, a program or a kernel module can
write to port 0xB2 on an Intel based motherboard to trigger
SMM. The PCI network card can be used to trigger SMM
too. From the PCI3.0 specification [11], a PCI card can either
trigger a normal interrupt or a System Management Interrupt
(SMI) that will enter SMM. Another way to trigger SMM is
to use a hardware timer to trigger SMM periodically. In this
case, the SMM code can ask the remote machine whether it
is requested to stop the machine. If not, the code will exit
SMM; otherwise, the code will stop the machine and wait for
commands from the remote server.

For server machines, another mechanism, IPMI, can also
trigger SMI. IPMI stands for the Intelligent Platform Manage-
ment Interface [12], which is a standardized computer system
interface used by system administrators to manage a computer
system and monitor its operation. Intel leads the development
of IPMI and more than two hundreds computer system vendors
support it. IPMI relies on baseboard management controller
(BMC) to manage the interface between system management
software and platform hardware. BMC is a specialized micro-
controller embedded on the motherboard of a computer and is
able to trigger SMI. Therefore, IPMI and BMC can be used
to trigger SMI remotely[13].

2) Gdbserver and GDB stub: Gdbserver is a control pro-
gram for Unix-like systems, which allows a user to connect



her program with a remote GDB without linking in the usual
debugging stub [14]. The debugging stub, sometimes referred
to as GDB stub, is also required to support remote debugging.
GDB and gdbserver can communicate with each other using
the standard GDB remote serial protocol.

We plan to implement gdbserver and GDB stub in the SMM.
When an debugging exception happens, the exception handler
will invoke SMM first and then the gdbserver in SMM will
communicate with the GDB running on the remote machine.
One challenge is how to integrate SMM with gdbserver.
Normally, SMM code is one part of the BIOS and written
in assembly language. For some old machines, the SMM is
not locked by the BIOS so that a third party developer can
write her own code and load it into the SMM. But for new
machines, the SMM is typically locked by the BIOS. To solve
this problem, we use coreboot.

Coreboot [15] (formerly known as LinuxBIOS ) is an
open source project aimed at replacing the proprietary BIOS
(firmware) in majority today’s computers. It performs a little
bit of hardware initialization and then executes a so-called
payload, such as SeaBIOS [16]. Coreboot is a modern version
of the firmware, because it switches to protected mode in a
very early stage and is written mostly in C language. Coreboot
also initializes the serial port to output some debug messages.
For our purpose, we could modify the coreboot source code,
find the SMI handler and implement the GDB remote serial
protocol (RSP) there.

The GDB RSP provides a high level protocol specification
allowing GDB to connect to any target remotely. If a target
implements the server side of the RSP protocol, the debugger
will be able to connect remotely to that target. The protocol
supports a wide range of connection types: direct serial de-
vices, UDP/IP, TCP/IP and POSIX pipes.

The RSP is a simple, packet based scheme. The format for
each packet is as follows:

$ <data> # CSUM1 CSUM2

The packet starts with $ symbol, then the actual data, and then
# symbol and then two hex bits for checksum. GDB provides
many commands for debugging. In our prototype, we plan to
first implement the minimum commands that are critical for
the live forensic applications. Some commands are:

1) ‘g’. ‘g’ is used to read the content of all the CPU
registers. When the GDB server receives this command,
it returns the register contents to the client.

2) ‘G’. ‘G’ is used to write the content of the CPU registers.
Values to be written are in the same packet with ’G’
command. It requires a reply such as ‘ACK’ or ‘NAK’.

3) ‘m’. ‘m’ command reads the content of a specific
memory. When received, the GDB server returns the
content to the client.

4) ‘M’. ‘M’ command writes the content to a memory
address. Values to be written are in the same packet
with ’M’ command. It requires a reply such as ‘ACK’
or ‘NAK’.

5) ‘c’. ‘c’ command resumes the execution. It can be

transmitted with or without an address. If an address is
specified, then resume the execution from that address.
Otherwise, resume from the current address.

One challenge is that the debugger cannot freeze the target
OS in SMM mode too long; otherwise, the target machine may
hang. One solution is to quit the SMM mode automatically
after a predetermined time period. Another solution is to find
out the reason that the OS hangs and try to modify the OS
(such as increase the buffer) to support the long time OS frozen
situation.

IV. RELATED WORK

Traditional digital forensics were designed to retrieve and
process all non-volatile machine-derived evidence in an un-
changing state, while live digital forensic techniques seek to
take a snapshot of the state of the computer similar to a
photograph of the scene of the crime [5].

The above “live” forensics definition gave rise to a plethora
of recent research on how to analyze the raw memory
dumps [17], [18], [3], [4], [5], [19]. Recent work attempts to
leverage multiple memory dumps using a tool called “CMAT”.
CMAT parses a memory dump to find active, inactive and
hidden processes as well as system registry information [20]

Complementing the existing semantic approaches, our work
focuses on the process of acquiring the system state and thus,
it is an enabling technology that enhances the value of existing
memory analysis mechanisms.

Previous researchers use hardware-assisted techniques to
acquire memory: a special-purpose PCI device can be used
either for forensic purpose [4] or for rootkit detection [7],
[18]. These devices either need a driver [18] (which is not
protected), or need to support stand-alone mode [7] (which
may not be supported by many commercial network cards).
HyperCheck [21] is close to our work. HyperCheck also uses
a PCI network card and SMM to obtain a full view of the
target machine. One difference is that HyperCheck is used
for integrity monitor while our system is used for forensic
analysis. Moreover, we try to solve the problem of how to
acquire a large amount of memory, which is not mentioned
in the HyperCheck. We also target at providing an on-line
forensic analysis by adopting debugging techniques.

Another related work is HyperGuard [22]. Rutkowska et al.
suggests using SMM of the x86 CPU to monitor the integrity
of the hypervisors. Besides using SMM, we also use a PCI
network card to perform the analysis of the state snapshot.
The goal of our work is different from HyperGuard.

Flicker [23] uses a TPM based method to provide a mini-
mum Trusted Code Base (TCB), which can be used to acquire
and report the memory contents to a remote machine. Flicker
requires advanced hardware features such as Dynamic Root of
Trust Measurement (DRTM) and late launch. In contrast, we
only need the static Platform Configuration Registers (PCRs)
to secure the booting process. To reduce the overhead of
Flicker, TrustVisor [24] has a small footprint hypervisor to
perform some cryptography operations. However, TrustVisor
is not designed for digital forensic.



A number of recent work has gone towards using SMM to
generate efficient rootkits [25], [26], [27], [28]. These rootkits
can be used either to get root privilege or as a key-stroke
loggers. Our tools use SMM for forensic purpose and are
promising to detect those rootkits.

V. CONCLUSION AND FUTURE WORK

Due to the increased sophistication of malware and the
complexity of the software, being able to perform live digital
forensics on commodity hardware has become a necessity.
An even more desirable feature is to be able to preserve and
“step-through” the execution of applications in a stealthy and
unobtrusive manner that goes beyond mere semantic analysis
of a dump of the memory contents and CPU registers.

In this paper, we discuss our approach to address the prob-
lem of acquiring multiple, continuous “snapshots” of the live
state of a commodity machine using a network card and CPU
SMM. The goal of our system is to perform such operations
without disrupting or informing the underlying code of the
presence of the inspection system. To that end, we propose
a new framework for volatile memory digital forensics that
leverages an interactive state analysis component that offers a
forensics investigator with a means to access the suspended
state of the machine. Additionally, we plan to integrate GDB
remote debugging with SMM for online forensics. We believe
that this will empower the analyst to perform a much more
meaningful analysis of the running programs and provide a
more reliable solution than general kernel and debugger-based
forensics. This is mainly due to the fact that the CPU SMM-
mode depends only on BIOS functionality and once invoked,
cannot be bypassed or subverted. As a future work, we plan to
fully implement the proposed system and test its performance
under different conditions and operating system.
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