
Efficient Verification of Input Consistency in
Server-Assisted Secure Function Evaluation

Vladimir Kolesnikov1?, Ranjit Kumaresan2??, and Abdullatif Shikfa3

1 Bell Labs Research, Alcatel-Lucent, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

2 University of Maryland, College Park, MD 20740, USA
ranjit@cs.umd.edu

3 Bell Labs Research, Alcatel-Lucent, 91620 Nozay, France
abdullatif.shikfa@alcatel-lucent.com

Abstract. We consider generic secure computation in the setting where
a semi-honest server assists malicious clients in performing multiple se-
cure two-party evaluations (SFE).
We present practical schemes secure in the above model. The main tech-
nical difficulty that we address is efficiently ensuring input consistency of
the malicious players across multiple executions. That is, we show how
any player can prove he is using the same input he had used in another
execution. We discuss applications of our solution, such as online profile
matching.

1 Introduction

Secure multiparty computation allows players to compute the value of a multi-
variate function on their inputs while keeping the inputs private. Generically, the
problem of secure computation has been solved [41, 12, 7], for both semi-honest
and malicious players. Since then, extensive body of work concentrated on op-
timizing these approaches so that they can be used in practice with acceptable
overhead.

In this work, we consider a setting where the malicious players wish to se-
curely compute on their inputs and are assisted by a semi-honest server to do
so. This setting, although not fully general, is gaining prominence, due to the
increasing success of collaborative platforms and online social networks. These

? Supported in part by the Intelligence Advanced Research Project Activity (IARPA)
via Department of Interior National Business Center (DoI/NBC) contract Num-
ber D11PC20194. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government

?? Work partly done while the author was visiting Bell Labs. Work partly supported
by NSF grant #1111599.



2 V. Kolesnikov, R. Kumaresan and A. Shikfa

platforms offer (and depend upon) a wide variety of applications that would
benefit from privacy protection for their users. One such functionality is online
profile matching (or match ratio computation). On dating sites, users search for
other users whose characteristics/profile match their desiderata, while online job
portals connect companies and job seekers who best match job openings. Typical
applications considered for general SFE, such as auctions, payments, etc., are of
interest also in our setting, with the added advantage of possible efficiency gain
due to the opportunity to engage the help of the server.

As mentioned, these and other scenarios naturally introduce a third-party,
the server, who is in the position to assist the users with their computation,
and who can also protect users’ identities. Asking the server to perform the
computation himself implies revealing private data, which is often sensitive and
needs protection. At the same time, the server is an established business and
often can be trusted not to deviate from the prescribed protocol. It is therefore
reasonable to assume that the server is semi-honest.

In our approach, we will use Yao’s Garbled Circuit (GC) [41] as the basic tool.
See Section 3.1 for the description of the technique. Having access to the semi-
honest server resolves the problem of malicious circuit generation. We also rely
on Oblivious Transfer (OT) secure against malicious receiver and semi-honest
sender. Combination of the two gives us a natural solution for our setting (see
Section 2 for more details). This solution is complete for the standard standalone
executions, usually considered in SFE research.

1.1 Input Consistency Verification

In this work we consider multiple SFE executions. One issue that arises here, and
which is not addressed by the standard SFE model is that of input consistency
between executions.

The need for input consistency. We first argue the importance of input
consistency verification. We consider several motivating examples first.

Consider profile matching and match ratio computation, also considered, e.g.,
in [38]. These are the underlying functionalities in online dating, resume/job
matching, profiling for advertisement and other services, etc. In many of these
applications, it is critical to the business model that users cannot manipulate
their inputs to extract maximum benefit, but, rather, that user’s inputs are
consistent among executions.

Consider, for example, the online dating application, where Alice and Bob
evaluate their compatibility by creating (and sometimes modifying) their profiles
and matching them to their preferences. This process may be interactive, and
the functions of interest may be adaptively selected. It may be important that
the corresponding inputs provided in these functions, are chosen consistently.
For example, if Bob’s private profile indicates that he is working on Ph.D. in
cryptography, and he later finds out that Alice likes kittens, he should not be
able to later claim a veterinary or firefighting degree.



Efficient Verification of Input Consistency in Server-Assisted SFE 3

Similarly, if one system user, a corporation, is running a promotion campaign
targeting a certain demographic, other users should not be able to improperly
adjust their profiles to take advantage of the promotion.

High-level Approach. One natural approach to this issue is to have the
server certify the players’ profiles by issuing a certificate. This works well in
limited circumstances, but not always. There are several problems with this ap-
proach. Firstly, certification is often understood as involving verification and
approval. While certifying profile characteristics, such as Age is reasonable, cer-
tifying favorite color may look unusual. Further, some characteristics, such as
favorite color are dynamic, and may change during the lifetime of the system.
Finally, sometimes a need arises in considering a personal feature which was not
expected to be in the profile, as its usefulness may have been discovered during
the interactive profile matching.

We consider a more light-weight approach, where no inputs are certified by
anybody. However, once a certain input had been used by Alice in communi-
cation with Bob, Bob can always ask her to supply the same input in future
communication, and vice versa. In our previous example, once Bob supplied the
profile that indicated he studies cryptography, Alice will be able to ensure that in
all future SFE where the field of studies is involved, Bob will input cryptography.

Similarly, if Alice communicated with corporation CoffeeCorp, and Al-
ice’s profile indicated she has graduated, she will not be able to participate
in CoffeeCorp’s promotion for free coffee for college students.

We note that the fact that some inputs may change over the course of time
will not break the fundamentals of our approach. The user with changed pro-
file attribute might simply inform the other user, if needed, that a particular
attribute was updated. The computation will go through, and other user will
simply be additionally informed of the changed input.

1.2 Our Setting

We summarize our setting, which we motivated in the previous section.

Two parties, Alice and Bob want to evaluate a function, without disclosing
their inputs to each other. Either of the parties can be maliciously corrupted.
They are assisted by a semi-honest server S who does not collude with any of
the other players. S has no input, and he obtains no output in the computation.
We allow both Alice and Bob to verify, with the help of the server, that, for two
SFE evaluations, a particular input wire is set to the same plaintext value.

We do not discuss which input wires are allowed to be checked, and how Alice
and Bob agree on which wires they are checking. We assume that this agreement
is reached over an insecure channel, and disagreement in this matter will simply
result in non-participation in the SFE and/or input verification protocols.

In particular, importantly, we will not allow a player to verify consistency of
two inputs of the other player without the other player’s consent.



4 V. Kolesnikov, R. Kumaresan and A. Shikfa

1.3 Related work

We consider SFE with malicious players, who use the help of a semi-honest
server. Most relevant to us is a comparatively small body of work that provides
improvements in settings similar to ours. We mention, but do not discuss in
detail here the works that specifically concentrate on the malicious setting, such
as [27, 21, 35, 29, 37, 34, 5, 8]. This is because malicious-secure protocols are much
more costly than the protocols we are considering.

The issue of input consistency comes up in secure two-party computation.
Cut-and-choose, a very popular technique, requires evaluation of a security-
parameter number of circuits, and a consistency check among all the inputs
of all the evaluated circuits [31, 27, 37, 29]. This requires a quadratic-complexity
solution4 [31, 27] and solves a harder problem than ours, since we have the help
of the semi-honest server.

This server-assisted computation model has been considered as early as [11],
where the authors consider players A and B who wish to let a third party C
learn the output of their computation. The helping oblivious server has often
been appealed to in circumstances where such a player is natural, and where
regular two- or multi-party SFE would have been too costly. One example is
that of auctions [33], where secure computation is achieved with the help of
two non-colluding servers. Here one (semi-honest) server creates garbled circuit
implementing the auction, and the other (malicious) server evaluates it based
on the inputs of the clients, which were submitted through a proxy Oblivious
Transfer protocol. Several protocols have also been developed for the special
case of secure auctions using only one server [17, 6, 9, 10]. More recently, [15]
argues that the server model is well-suited for the web (where clients connect
and interact only once with servers, and simultaneous availability of all clients
is not possible) and present several protocols for a number of functions of in-
terest. Other recent works [23, 30, 3] also consider secure computation in the
server-assisted model but allow the server to be malicious. As mentioned earlier,
protocols secure against malicious parties are much more expensive than the
protocols we are considering. [22] similarly uses the helping server to overcome
the non-simultaneous nature of survey submissions in survey processing. This
work is incomparable to ours because, firstly, most of it concentrates on specific
functions of interest (e.g., auctions). More importantly, our distinguishing fea-
ture is the input consistency verification across several executions, which is not
considered in these works.

Input consistency checking is recognized in security literature as an impor-
tant ingredient in system building. Zero-knowledge proofs on commitments and
related techniques are often used in consistency checking. For example, [16] con-
sider privacy-preserving data mining and identify the need for input consistency
checking in computing specific functions of interest. They further propose to solve
it by involving expensive public key techniques. This body of work is incompa-
rable to ours, because, firstly, they consider specific problems, their solutions

4 An expander-graph-based linear-complexity solution [40] is also available, but it is
more costly for practical parameters.



Efficient Verification of Input Consistency in Server-Assisted SFE 5

are often informal and presented without proofs (e.g. that of [16]), and further
rely on expensive public-key tools. Some of their ideas (e.g., [16] using same
randomness in encrypting same inputs), however, are related to our approach.

Finally, input consistency can be achieved via Certificate Authority (CA)
issuing credentials for players’ inputs. However, as we discussed in Introduction,
this approach is not sufficiently general, and is more costly than our proposed
approach.

In contrast with all of the above approaches, we show how to ensure input
consistency across several executions while only relying on a small number of
symmetric-key primitives, and minimal additional storage by the players only
(one bit per input to be cross-referenced), and no additional storage by the server
other than one master secret of security-parameter length.

1.4 Our contributions and outline of the work

We propose a quite general solution to the reactive SFE among two malicious
players and the helping non-colluding semi-honest server. Our main technical
contribution is a technique to ensure input consistency among several executions.
Our solution is very efficient and is comparable to that of Yao’s Garbled Circuit
(GC) in the semi-honest model.

We start our presentation with a high-level description of our technical idea
in Section 2. We then provide the overview of the preliminaries in Section 3,
before presenting the detailed protocol and proof in Section 4. We discuss several
natural extensions in Section 5.

2 Overview of our approach

We base our solution on Yao’s GC [41] (and its state-of-the-art optimizations
such as garbled row reduction [36], free-XOR [25]). GC is secure against malicious
circuit evaluator and semi-honest circuit constructor, therefore we will have the
semi-honest server S generate the garbled circuit for the chosen function (as
communicated to S by both clients). As for inputs, we will use OT extension [20]
secure against malicious receivers and semi-honest server [18]. Each player runs
above OT with the server to obtain wire secrets corresponding to their input.
Then they send these wire secrets to the other player (and receive the other
player’s input secrets). The computed GC is then sent by S to both players for
evaluation (it is important to send the GC after the inputs have been delivered
so that, e.g., players cannot abort based on the output of SFE). At this point,
each player can complete GC evaluation and compute their output.

The above is a complete solution with the exception of the input consistency
verification.

Our main contribution is precisely the method for input consistency verifica-
tion. Our main idea is as follows. The input wire secrets in the constructed (by
S) garbled circuit will encode their corresponding plaintext values according to
a secret stored by S. This can be done, for example, by S choosing and storing a



6 V. Kolesnikov, R. Kumaresan and A. Shikfa

random bit bi and setting the last bit of the 0-secret of wire i to bi and the last
bit of 1-secret to be ¬bi. Now, when, say, Bob, receives Alice’s wire secret from
Alice, he will store the last bit of the wire of interest. Note that effectively the
plaintext value of this wire is shared between S and Bob. Now, when Bob wishes
to confirm that plaintext values of two of Alice’s wires across two executions are
the same, he simply needs to compare the XOR of the two values he stored with
the XOR of the corresponding values stored by S. If the XOR values are the
same, then Alice supplied the same input. Indeed, in both good-behavior cases
(Alice supplying either 0, 0 or 1, 1 in the two executions), Bob’s stored bits will
XOR to the XOR of the two stored bits of S. We stress that this check can be
done “in plaintext”, i.e., simply by S sending the corresponding XOR value to
Bob. This approach is symmetrically applied to both players.

Finally, we note that the server generates the encoding bits bi using a PRFG,
so he does not need to store any of the plaintext encoding bits, as he can always
regenerate them from his master secret, client ids and SFE id. We note that
including client ids into the circuit generation seed derivation is important. If
not included, two malicious players P1, P2 might open an honest Alice’s input of
execution Ci by pretending that Ci was their prior execution.

We now make several observations regarding our presentation and the result.

Observation 1 We stress that since we encode the wire-secret to wire-key corre-
spondence in a single bit of the wire key, it is important that this correspondence
can not be violated by a malicious player. For example, a semantically secure
encryption may ignore the last bit of the key. If such an encryption were used in
GC, a malicious player could flip the last bit and later falsely convince the veri-
fier of input consistency. To prevent this, we ensure that players cannot malleate
the received wire keys by having the server S send hashes of all wire keys to both
players.

Observation 2 In our formal presentation, we will consider functions F that
output the same value to both Alice and Bob. Our theorems and protocols can be
naturally extended to cover the general case of the multi-output functionalities.

Observation 3 While we concentrate our discussion on input consistency, we
can verify consistency of any wires of the evaluated circuits using a natural gen-
eralization of our approach.

Observation 4 The server will aid in consistency verification only if it is ap-
proved by both players by correspondingly conveying their consent to S. We do
not discuss how players know which wires are to be checked, we assume this is
given to players as an additional and insecure input.

Observation 5 The server will aid in SFE only if the evaluated circuit is ap-
proved by both players by correspondingly sending the (identical to each other)
circuit description S. We do not discuss how players know which function they
wish to compute; we assume this is given to players as an additional and insecure
input.



Efficient Verification of Input Consistency in Server-Assisted SFE 7

Observation 6 Our protocols achieve fairness with respect to both clients. Re-
call, fairness requires that both participants of SFE learn the output simultane-
ously. In other words, players are not allowed to abort early after learning the
output. Full, and even partial fairness is quite expensive to achieve (see e.g., [13,
14]) in the standard two-party setting, and full fairness comes “for free” in our
setting.

Observation 7 Each player only needs to remember the bit corresponding to a
single instance of a specific semantic input (say the first one) to achieve com-
parison. For example, Alice will need to remember only one instance of bits cor-
responding to Bob’s age. Indeed, all future uses of a particular semantic input
can be compared to its first use.

3 Preliminaries and Notation

3.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [41], excellently presented in [28], is the most
efficient method for one-round secure evaluation of a boolean circuit C. We
summarize its ideas in the following. The circuit constructor S creates a garbled
circuit C̃: for each wire wi of the circuit, he randomly chooses two garblings
w̃0
i , w̃

1
i , where w̃ji is the garbled value of wi’s value j. (Note: w̃ji does not reveal j.)

Further, for each gate Gi, S creates a garbled table T̃i with the following property:
given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled
value of the corresponding Gi’s output, but nothing else. S sends these garbled
tables, called garbled circuit C̃ to the evaluator C. Additionally, C obliviously
obtains the garbled inputs w̃i corresponding to inputs of both parties: the garbled
inputs x̃ corresponding to the inputs x of S are sent directly and ỹ are obtained
with a parallel 1-out-of-2 oblivious transfer (OT) protocol [32, 2, 28]. Now, C can

evaluate the garbled circuit C̃ on the garbled inputs to obtain the garbled outputs
by evaluating C̃ gate by gate, using the garbled tables T̃i. Finally, C determines
the plain values corresponding to the obtained garbled output values using an
output translation table received from S. Correctness of GC follows from the
way garbled tables T̃i are constructed.

We note that GC evaluator cannot deviate from the prescribed protocol, and
GC is therefore secure against malicious GC evaluator, given an appropriate
malicious-secure OT protocol.

3.2 Notation

Let κ be the computational security parameter. The server S assists parties P1

and P2 to secure evaluate arbitrary functions over their inputs multiple times.
In each iteration, S will be provided circuit Ci that party P1 with client id id1,
and input xi, and party P2 with client id id2, and input yi, wish to evaluate.
We let xi,j (resp. yi,j) denote the j-th bit of xi (resp. yi). We assume that xi



8 V. Kolesnikov, R. Kumaresan and A. Shikfa

(resp. yi) is of length m (resp. n), and that I1 (resp. I2) represents the set of
P1’s (resp. P2’s) input wires in Ci.

Server S maintains a master secret – a state, denoted by σ, across
executions. Given a circuit Ci, and state σ, the server uses algorithm
GarbGen(i, Ci, id1, id2, σ) to generate a garbled version of Ci which we denote

by C̃i.
In circuit Ci, we let ui,j (resp. vi,j) denote the j-th input wire belonging to

party P1 (resp. P2). For a wire ui,j (resp. vi,j), we refer to the garbled values cor-
responding to 0 and 1 by ũ0i,j , ũ

1
i,j (resp. ṽ0i,j , ṽ

1
i,j ) respectively. While evaluating

the garbled circuit, the evaluator will possess only one of two garbled values for
each wire in the circuit. We let w̃′i,j denote the garbled value on wire wi,j that
is possessed by the evaluator.

Our protocols are designed in the random oracle model. In our protocols
H,E, and H ′ represent hash functions that are modeled as non-programmable
random oracles.

4 Input Consistency Verification in Server-Assisted SFE

We start this section with the definition of security. Then, in Section 4.2, we
present a simple protocol for server-assisted SFE secure against malicious play-
ers. This is the natural protocol based on GC. Finally, in Section 4.3, we show
how to allow to perform input consistency checks.

4.1 Definitions

We provide a formal definition of the SFE functionality we will realize. We want
P1 and P2 to securely compute with the help of the server, and, in addition, to
be able to check each other’s inputs for consistency. Our functionality provides
two interfaces, evaluate and check, which, respectively, evaluate the given circuit,
and checks two inputs for consistency. It is easy to see that such a functionality
provides the utility we desire, i.e., allows P1 to ensure consistency of P2’s inputs,
and vice versa.

Definition 1. The consistency checking functionality Fcc is a reactive func-
tionality that interacts with a server S and parties P1 and P2 in the following
way.

– If it receives an evaluate request from both parties, then Fcc obtains (i, Ci, xi)
from P1, and (i, Ci, yi) from P2. If the values i, Ci, provided by P1 and P2

differ, then Fcc returns ⊥ to S. Fcc records (i, xi, yi). Then Fcc returns
(i, zi = Ci(xi, yi)) to both P1 and P2. Finally, Fcc returns (i, Ci) to S.

– If it receives a check request from both parties, then Fcc obtains the same
string (i1, j1, i2, j2) from both parties. Fcc returns (i1, j1, i2, j2) to S. Let wi,j
denote the plaintext value carried on j-th wire in circuit Ci when evaluated
using inputs xi and yi. Fcc checks if wi1,j1 = wi2,j2 , and returns pass to both
parties if the check passed, else it returns fail to both parties.



Efficient Verification of Input Consistency in Server-Assisted SFE 9

We say that a stateful protocol π is a server-assisted secure computation pro-
tocol that allows consistency checking across multiple sequential executions if it
securely realizes Fcc in the presence of an adversary A.

Remark: Note that the above definition reveals each circuit Ci as well as each
check request (i1, j1, i2, j2) to the semi-honest server. This is allowed in our
model, and is consistent with the standard definitions of SFE security. However,
even this information can be hidden, and we discuss natural ways to do so in
Section 5.

4.2 Server-Assisted Secure Computation

In this section, we describe a simple protocol for secure computation that sup-
ports multiple executions in the server-assisted setting. Our protocol is a natural
adjustment of the secure computation protocols based on garbling schemes [41,
4]. The main idea of the protocol of this section is that the semi-honest server
will generate the GC and distribute it to both players, after running the OT
protocol. We note that we do not yet address input consistency in this section,
and the following protocol is simply a building block. We will use the protocol
of this section as a subprotocol in the scheme presented in Section 4.3.

In this protocol, C̃i used by S is constructed as described in Section 3.1.
Let input keys for P1 be {ũ0i,j , ũ1i,j}j∈I1 , and those corresponding to P2 be

{ṽ0i,j , ṽ1i,j}j∈I2 . We describe our protocol below.

Protocol 1.

1. S and P1 participate in m OT instances in the following way. In the j-th
instance:
– S acts as sender with input (ũ0i,j , ũ

1
i,j).

– P1 acts as receiver with input xi,j .
– P1 obtains ũ′i,j as output.

2. S and P2 participate in n OT instances in the following way. In the j-th
instance:
– S acts as sender with input (ṽ0i,j , ṽ

1
i,j).

– P2 acts as receiver with input yi,j .
– P2 obtains ṽ′i,j as output.

3. For each j ∈ I2, S sends H(ṽ0i,j), H(ṽ1i,j) in random order to P1. Let P1

receive these as {gi,j , g′i,j}j∈I2 .

4. For each j ∈ I1, S sends H(ũ0i,j), H(ũ1i,j) in random order to P2. Let P2

receive these as {hi,j , h′i,j}j∈I1 .
5. P1 sends {ũ′i,j}j∈I1 to P2.
6. P2 sends {ṽ′i,j}j∈I2 to P1.
7. P1 aborts the protocol if for some j ∈ I2, H(ṽ′i,j) 6∈ {gi,j , g′i,j} holds.
8. P2 aborts the protocol if for some j ∈ I1, H(ũ′i,j) 6∈ {hi,j , h′i,j} holds.

9. S sends the garbled circuit C̃i to both P1 and P2.
10. Using keys {ṽ′i,j}j∈I2 and {ũ′i,j}j∈I1 , P1 and P2 evaluate C̃i to obtain output

zi.



10 V. Kolesnikov, R. Kumaresan and A. Shikfa

Intuition for security. (A formal proof is included in the proof of Theo-
rem 1.) We informally argue that Protocol 1 allows for multiple secure evalua-
tions in the presence of an adversary that either passively corrupts S, or actively
corrupts one of P1, P2.

Security against semi-honest S. Note that the server does not learn what keys
are sent by P1 to P2 and vice versa. Furthermore, by receiver-security of OT, the
keys selected by P1 and P2 (in their respective OT executions) is computationally
hidden from the server. This is enough to guarantee security against a semi-
honest S.

Security against malicious P1. The simulator extracts P1’s inputs by using the
simulator of the secure OT protocol. It then checks whether the keys {ũ′i,j}j∈I1
correspond to the extracted input. If not, the simulator aborts the simulation
at this stage, and outputs whatever P1 outputs. If the checks pass, then the
simulator sends the extracted input to the trusted party. Upon receiving the
output back from the trusted party, the simulator “fakes” the garbled circuit, and
provides the appropriate output translation tables. This completes an informal
description of the simulation. Indistinguishability of simulation follows from the
fact thatH is a random oracle, and the encryption scheme (used to create garbled
tables) is semantically secure, and the security of OT protocol.

Security against malicious P2 follows by an argument similar to the above.

We will use Protocol 1 as a subprotocol to construct our main protocol that
also enables consistency verification in addition to secure computation.

4.3 Verifying Consistency Across Multiple Executions

Our main technical contribution is a design of a new garbling scheme that will al-
low efficient consistency verification in our setting. Recall that Yao’s garbled cir-
cuit is constructed by choosing for each wire wi,j , garblings w̃0

i,j , w̃
1
i,j at random

from {0, 1}κ, and creating the garbled tables T̃i,j using any semantically-secure
encryption scheme.

GC Encryption. In our GC garbling schemes, we employ the following encryp-
tion. For simplicity of presentation, we work in the random oracle model.

Let E : {0, 1}∗→{0, 1}κ be a random oracle. For encrypting the value x in the
truth table of the `-th gate in the i-th execution, we use the following encryption
scheme that takes two keys ka, kb as follows:

Encka,kb(x, i, `) = E(ka‖kb‖i‖`)⊕ x

Before presenting our main protocol, we describe our main amendment to
the traditional Yao GC-based garbling scheme (and their benefits) that we take
advantage of.

Correlating the keys across multiple executions. We achieve verifiable
consistency across multiple executions by correlating the keys at the input level.



Efficient Verification of Input Consistency in Server-Assisted SFE 11

More precisely, the server S chooses at random his master secret σ ∈ {0, 1}κ,
permanently stores it, and uses it in the following way to covertly “mark” each
input wire with its plaintext label. Let P1’s (resp. P2) id be id1 (resp. id2),
and H ′ : {0, 1}∗ → {0, 1} be a one-bit RO. For wi,j that is the input wire
of either P1 or P2: (1) the first κ − 1 bits of w̃0

i,j , w̃
1
i,j are picked at random,

and (2) the last bit of w̃0
i,j is set to H ′(i‖j‖id1‖id2‖σ), while the last bit of

w̃1
i,j is set to w̃0

i,j ’s complement 1⊕H ′(i‖j‖id1‖id2‖σ). As we will formally show
below, correlating the keys in the manner described above will allow for efficient
consistency verification. We stress that the remaining keys (i.e., those that do
not correspond to input or output wires of Ci) are still picked at random from
{0, 1}κ.

We are now ready to formalize the above discussion and to describe GarbGen
which is the algorithm S uses to create the garbled circuit for the i-th execution.
The algorithm GarbGen takes the execution index i, the circuit Ci, and the
server’s state (master secret) σ to produce garbled circuit C̃i.

In GarbGen, we generate the wires garblings at random. We note that in
practice, we would probably use a PRFG such as AES.

Algorithm GarbGen(i, Ci, id1, id2, σ).
In Ci, let ui,j and vi,j represent the input wires corresponding to P1 whose client
id is id1 and P2 whose client id is id2 respectively.

– For every wi,j that is an input wire of either P1 or P2, do the following:
1. Set ŵi,j := H ′(i‖j‖id1‖id2‖σ). (Recall, H ′’s output is one-bit.)
2. Choose r0, r1←{0, 1}κ−1 at random.
3. Set w̃0

ij := r0‖ŵi,j .
4. Set w̃1

ij := r1‖(1⊕ŵi,j).
– For every internal wire wi,j of Ci, choose w̃0

i,j , w̃
1
i,j←{0, 1}κ.

– For each gate G in Ci do the following: Let the gate index of G be `. Suppose
w1 and w2 represent input wires, and w3 represent the output wires of gate
G. For j ∈ {1, 2, 3}, let w̃0

j , w̃
1
j represent the garblings corresponding to 0

and 1 respectively. Given this, the garbled table T̃ , corresponding to gate
G with gate function g, in C̃i consists of a random permutation of the set

{E(w̃b11 ‖w̃
b2
2 ‖i‖`)⊕w̃

g(b1,b2)
3 }b1,b2∈{0,1}. (Recall E is a random oracle.)

We are now ready to describe our final protocol that enables efficient verifi-
cation of consistency across multiple executions. We refer the reader to technical
overview of the protocol and its intuition presented in Section 2.

Protocol 2

Setup: S chooses random seed σ←{0, 1}κ.

Evaluation: In the i-th execution:

– P1 and P2 provide Ci to S. If submissions of P1 and P2 differ, the server
aborts.



12 V. Kolesnikov, R. Kumaresan and A. Shikfa

– S creates C̃i←GarbGen(i, Ci, id1, id2, σ).

– S uses C̃i as the garbled circuit, and participates in Protocol 1 with P1 and
P2. At the end of the protocol, P1 and P2 obtain their respective outputs of
the execution.

– For wi,j that represents the input wire of either P1 or P2, both P1 and P2

do the following.
• Set ŵ′i,j to the last bit of w̃′i,j .
• Add ŵ′i,j to the local state.

Consistency Verification:

– Both P1 and P2 specify (i1, j1, i2, j2) to S. If submissions of P1 and P2 differ,
the server aborts.

– S retrieves ŵi1,j1←H ′(i1‖j1‖id1‖id2‖σ), and ŵi2,j2←H ′(i2‖j2‖id1‖id2‖σ). S
sends the bit (ŵi1,j1⊕ŵi2,j2) to both P1 and P2. Denote the bit received by
P1 and P2 as c.

– P1 and P2 retrieve ŵ′i1,j1 and ŵ′i2,j2 from their local state, and check if

c
?
= ŵ′i1,j1⊕ŵ

′
i2,j2

. If the check fails then the execution is aborted.

This completes the description of our protocol. We stress that unlike P1 and P2,
the server S does not store any local state other than the master secret σ. We
now provide the proof of security.

Theorem 8. Let A be an adversary that either passively corrupts S or actively
corrupts one of P1, P2. Then, Protocol 2 securely realizes Fcc in the presence of
A.

Proof. (sketch) Security against semi-honest S. We start with showing that
the protocol is secure against the semi-honest server S. The information received
by S are transcripts of the underlying OTs. This does not leak information,
because OTs are secure against semi-honest S. Given this, the simulator SimS
follows naturally.

Secure against malicious P ∗1 . We present the simulator Sim1 of a malicious
P ∗1 , and argue that it produces a good simulation.

Sim1 chooses random seed σ←{0, 1}κ. Sim1 does the following in each itera-
tion i.

Sim1 first obtains C̃i by running GarbGen(i, Ci, σ). Then, Sim1 starts P ∗1 and
interacts with it, sending it messages it expects to receive, and playing the role
of the trusted party for the OT oracle calls that P ∗1 makes, in which P ∗1 plays
the role of the receiver.

Sim1 plays OT trusted party m times, where P ∗1 is the receiver; as such,
Sim1 receives all m OT selection bits (which are supposed to correspond to P ∗1 ’s
input) from P ∗1 and each time, for concreteness say j, uses {ũ0i,j , ũ1i,j} (which are
P1’s input keys specified by GarbGen) to hand to P ∗1 as his OT output. Let us
denote this output by ũi,j . If any of the underlying OTs abort, then Sim1 sends
abort to the trusted party and halts, outputting whatever P ∗1 outputs.



Efficient Verification of Input Consistency in Server-Assisted SFE 13

Acting as S, the simulator Sim1 chooses random κ-bit string rj , and sends
rj , H(ṽ0i,j) in random order. Then, acting as P2, Sim1 receives {ũ′i,j}j∈I1 from

P ∗1 , and sends {ṽ0i,j}j∈I2 to P ∗1 . Next, Sim1 checks if for every j ∈ I1, it holds
that ũ′i,j = ũi,j . If any of the checks fail, then the simulator sends abort to the
trusted party, and terminates outputting whatever P ∗1 outputs. Otherwise, Sim1

forms x∗i in the following way. For each j ∈ I1, if ũi,j = ũ0i,j , then x∗i,j is set to
0; else it is set to 1. Then, Sim1 feeds x∗i as its input to the trusted party. Sim1

gets back the output zi from the trusted party.

Sim1 creates a “fake” garbled circuit C̃ ′i which is exactly the same as an

honestly generated garbled circuit C̃i (created using GarbGen) except with the
following modification. Let G denote an output gate with input wires w1, w2,
and output wire w3. Let G’s gate index be `. Recall Sim1 obtained output zi
from the trusted party, so it knows the actual value b that is carried on the
output wire w3. Sim1 creates garbled gate T̃ as a random permutation of the set
{E(w̃b11 ‖w̃

b2
2 ‖i‖`)⊕w̃b3}b1,b2∈{0,1}. That is, the “fake” garbled circuit, upon evalu-

ation, will always yield the correct output zi. Sim1 sends the fake garbled circuit
C̃ ′i to P ∗1 . This completes the description of the simulation of the evaluation
phase.

We now describe the simulation of the consistency verification stage. Acting
as S, the simulator Sim1 receives query (i1, j1, i2, j2) from P ∗1 . Sim1 checks if this
is a valid query, and if not, it aborts the protocol, and terminates the simulation
outputting whatever P ∗1 outputs. Otherwise, Sim1 returns H(i1‖j1‖id1‖id2‖σ)⊕
H(i2‖j2‖id1‖id2‖σ) to both parties.

We now argue that Sim1 produces a view indistinguishable from the real
execution in both the evaluation and verification stages. We first note that Sim1’s
interaction with P ∗1 is indistinguishable from that of honest S and P2. Indeed, OT
secrets delivered to P ∗1 are distributed identically to real execution. Further, since
non-selected OT secrets remain hidden, P ∗1 knows the value of exactly one key in
{ũ0i,j , ũ1i,j} for each of his input wires j ∈ I1. Thus, if the execution is not aborted,
then P ∗1 must have sent the key that he obtained via OT with Sim1 (acting as S).
Also, the fake garbled circuit sent to P ∗1 from Sim1 is indistinguishable from real,
since the underlying encryption scheme is based on RO and produces uniform
and independent ciphertexts.

Now we argue that the simulation of the consistency verification stage is
indistinguishable from the real execution. Let (i1, j1, i2, j2) represent the query
that was sent by P1. First, we consider the case when wires j1 and j2 carry P2’s
inputs. Since valid queries over (honest) P2’s inputs are actually consistent in
the real execution, and since Sim1 generates keys honestly according to GarbGen,
we conclude that Sim1’s answer is indistinguishable from S’s answer in the real
execution. Now suppose wires j1 and j2 carry P1’s inputs. Since an RO collision
happens with negligible probability, we are guaranteed that the key ũ′i,j that P1

sent to P2 is exactly the one that P1 retrieved via OT. Indistinguishability of
the simulation follows from the fact that Sim1 answers the query honestly based
on keys generated via GarbGen. This completes the proof of correctness of the
simulation when P ∗1 is malicious.



14 V. Kolesnikov, R. Kumaresan and A. Shikfa

The case when P2 is malicious is symmetric and is skipped. �

5 Extensions

As observed earlier, our definition of Fcc functionality reveals information about
the verification queries and the circuit Ci to the server S. While, as we discussed,
this is not a security violation, in some use cases, it is desired to hide this
information as well. In this section, we discuss natural approaches to hiding this
information.

Private verification queries. We provide a simple solution for preserving
privacy of verification queries. Recall that in order to verify input consistency,
parties need to retrieve the XOR of the least significant bits of the wire keys
corresponding to wires specified in their queries. Note that these least significant
bits can be obtained directly from the private state σ (i.e. the master secret)
of S. This motivates the following solution that preserves privacy of verification
queries. Consider a circuit C ′ which takes as input queries q1, q2 from parties
P1 and P2, and the private state σ of S, and computes the desired output (i.e.,
XOR of the least significant bits of the keys specified by the queries). Clearly,
if C ′ is evaluated securely, i.e., while keeping queries q1, q2 private from S, and
private state σ hidden from P1 and P2, then our problem is solved. We propose
the following efficient solution to securely evaluate C ′ using garbled circuits.

We model H ′ as a PRF (as opposed to RO) in order to allow C ′ to internally
generate the keys from σ. (We stress that modeling H ′ as a PRF does not violate
the security of our construction in any way.) We also require C ′ to check if q1 = q2
holds, and produce output only when this check passes. This is necessary in order
to guarantee that the malicious party does not obtain information other than
what the output of the honest query reveals.

Now, without loss of generality, suppose party P1 wishes to verify input con-
sistency. Parties simply securely evaluate C ′ on corresponding inputs, and use
the output of this computation as discussed in consistency verification subproto-
col of Protocol 2 described in Section 4.3. Clearly, S will not know which wires
are being verified. We note that two colluding players P1 and P2 will not obtain
output related to a third player, since H ′ used for evaluation of the marker bits
is evaluated on inputs which include both client ids.

We stress that the above solution is very efficient5; in particular its complexity
is independent of the number of past executions between P1 and P2.

Function privacy. We employ standard techniques such as universal cir-
cuits [39, 1, 26, 24] to preserve function privacy. Our application is mildly com-
plicated by the fact that we need to ensure that both parties provide the same
function descriptors as input to the universal circuit. This is done to prevent a
malicious party from evaluating an arbitrary function over the honest party’s
inputs. We resolve this issue using techniques similar to the ones we employed
when privacy of queries needed to be preserved.

5 See [19] for the concrete cost of securely evaluating AES.



Efficient Verification of Input Consistency in Server-Assisted SFE 15

In more detail, let U ′ denote a circuit that takes as input two function de-
scriptors f1, f2, and two inputs x and y. Circuit U ′ checks if f1 = f2, and if
so, evaluates a universal circuit U on input f1, x, y to produce output f1(x, y).
Clearly, if U ′ is evaluated securely, i.e., while keeping function descriptors f1, f2
private from S, then our problem is solved. Secure evaluation of U ′ is performed
in the same way as described in the setting where privacy of queries needed to
be preserved.

References

1. Abadi, M., and Feigenbaum, J. Secure circuit evaluation. Journal of Cryptology
2, 1 (1990), 1–12.

2. Aiello, W., Ishai, Y., and Reingold, O. Priced oblivious transfer: How to
sell digital goods. In Advances in Cryptology – EUROCRYPT 2001 (May 2001),
B. Pfitzmann, Ed., vol. 2045 of Lecture Notes in Computer Science, Springer,
pp. 119–135.

3. Asharov, G., Jain, A., Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.,
and Wichs, D. Multiparty computation with low communication, computation
and interaction via threshold fhe. In Advances in Cryptology – EUROCRYPT 2012
(2012), Lecture Notes in Computer Science, Springer, pp. 483–501.

4. Bellare, M., Hoang, V. T., and Rogaway, P. Foundations of garbled circuits.
p. To Appear at ACM CCS 2012.

5. Bendlin, R., Damg̊ard, I., Orlandi, C., and Zakarias, S. Semi-homomorphic
encryption and multiparty computation. In Advances in Cryptology – EURO-
CRYPT 2011 (May 2011), K. G. Paterson, Ed., vol. 6632 of Lecture Notes in
Computer Science, Springer, pp. 169–188.

6. Cachin, C. Efficient private bidding and auctions with an oblivious third party. In
Proceedings of the 6th ACM conference on Computer and communications security
(New York, NY, USA, 1999), ACM, pp. 120–127.

7. Chaum, D., Crépeau, C., and Damg̊ard, I. Multiparty unconditionally secure
protocols. In 20th Annual ACM Symposium on Theory of Computing (May 1988),
ACM Press, pp. 11–19.

8. Damgard, I., Pastro, V., Smart, N., and Zakarias, S. Multi-party computa-
tion from somewhat homomorphic encryption. In Advances in Cryptology – Crypto
2012, pp. 643–662.

9. Di Crescenzo, G. Private selective payment protocols. In Financial Cryptogra-
phy, vol. 1962 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2001, pp. 72–89.

10. Di Crescenzo, G. Privacy for the stock market. In Financial Cryptography,
vol. 2339 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2002, pp. 269–288.

11. Feige, U., Kilian, J., and Naor, M. A minimal model for secure computation
(extended abstract). In STOC’94: Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing (1994), ACM, pp. 554–563.

12. Goldreich, O., Micali, S., and Wigderson, A. How to play any mental game,
or a completeness theorem for protocols with honest majority. In 19th Annual
ACM Symposium on Theory of Computing (May 1987), A. Aho, Ed., ACM Press,
pp. 218–229.



16 V. Kolesnikov, R. Kumaresan and A. Shikfa

13. Gordon, S. D., Hazay, C., Katz, J., and Lindell, Y. Complete fairness in
secure two-party computation. In 40th Annual ACM Symposium on Theory of
Computing (May 2008), R. E. Ladner and C. Dwork, Eds., ACM Press, pp. 413–
422.

14. Gordon, S. D., and Katz, J. Partial fairness in secure two-party computation.
In Advances in Cryptology – EUROCRYPT 2010 (May 2010), H. Gilbert, Ed.,
vol. 6110 of Lecture Notes in Computer Science, Springer, pp. 157–176.

15. Halevi, S., Lindell, Y., and Pinkas, B. Secure computation on the web: Com-
puting without simultaneous interaction. In Advances in Cryptology CRYPTO
2011, vol. 6841 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2011, pp. 132–150.

16. Han, S., and Ng, W. K. Preemptive measures against malicious party in privacy-
preserving data mining. In SIAM International Conference on Data Mining (2008),
pp. 375–386.

17. Harkavy, M., Tygar, J. D., and Kikuchi, H. Electronic auctions with private
bids. In Proceedings of the 3rd conference on USENIX Workshop on Electronic
Commerce - Volume 3 (Berkeley, CA, USA, 1998), USENIX Association.

18. Harnik, D., Ishai, Y., Kushilevitz, E., and Nielsen, J. B. OT-combiners via
secure computation. In TCC 2008: 5th Theory of Cryptography Conference (Mar.
2008), R. Canetti, Ed., vol. 4948 of Lecture Notes in Computer Science, Springer,
pp. 393–411.

19. Huang, Y., Evans, D., Katz, J., and Malka, L. Faster secure two-party com-
putation using garbled circuits. In USENIX Security (2011).

20. Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. Extending oblivious transfers
efficiently. In Advances in Cryptology – CRYPTO 2003 (Aug. 2003), D. Boneh,
Ed., vol. 2729 of Lecture Notes in Computer Science, Springer, pp. 145–161.

21. Jarecki, S., and Shmatikov, V. Efficient two-party secure computation on
committed inputs. In Advances in Cryptology – EUROCRYPT 2007 (May 2007),
M. Naor, Ed., vol. 4515 of Lecture Notes in Computer Science, Springer, pp. 97–
114.

22. Joan Feigenbaum, Benny Pinkas, R. R., and Saint-Jean, F. Secure compu-
tation of surveys. In EU Workshop on Secure Multiparty Protocols (2004).

23. Kamara, S., Mohassel, P., and Raykova, M. Outsourcing multi-party com-
putation. Cryptology ePrint Archive, Report 2011/272, 2011.

24. Katz, J., and Malka, L. Constant-round private function evaluation with linear
complexity. In Advances in Cryptology – ASIACRYPT 2011 (Dec. 2011), Lecture
Notes in Computer Science, Springer, pp. 556–571.

25. Kolesnikov, V., and Schneider, T. Improved garbled circuit: Free XOR gates
and applications. In ICALP 2008: 35th International Colloquium on Automata,
Languages and Programming, Part II (July 2008), vol. 5126 of Lecture Notes in
Computer Science, Springer, pp. 486–498.

26. Kolesnikov, V., and Schneider, T. A practical universal circuit construction
and secure evaluation of private functions. In FC 2008: 12th International Con-
ference on Financial Cryptography and Data Security (Jan. 2008), G. Tsudik, Ed.,
vol. 5143 of Lecture Notes in Computer Science, Springer, pp. 83–97.

27. Lindell, Y., and Pinkas, B. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Advances in Cryptology –
EUROCRYPT 2007 (May 2007), M. Naor, Ed., vol. 4515 of Lecture Notes in
Computer Science, Springer, pp. 52–78.

28. Lindell, Y., and Pinkas, B. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology 22, 2 (Apr. 2009), 161–188.



Efficient Verification of Input Consistency in Server-Assisted SFE 17

29. Lindell, Y., and Pinkas, B. Secure two-party computation via cut-and-choose
oblivious transfer. In TCC 2011: 8th Theory of Cryptography Conference (Mar.
2011), Y. Ishai, Ed., vol. 6597 of Lecture Notes in Computer Science, Springer,
pp. 329–346.

30. Lopez-Alt, A., Tromer, E., and Vaikuntanathan, V. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In 44th
Annual ACM Symposium on Theory of Computing (2012), ACM Press, pp. 1219–
1234.

31. Mohassel, P., and Franklin, M. Efficiency tradeoffs for malicious two-party
computation. In Public Key Cryptography - PKC 2006, vol. 3958 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2006, pp. 458–473.

32. Naor, M., and Pinkas, B. Efficient oblivious transfer protocols. In 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (Jan. 2001), ACM-SIAM, pp. 448–
457.

33. Naor, M., Pinkas, B., and Sumner, R. Privacy preserving auctions and mech-
anism design. In Proceedings of the 1st ACM conference on Electronic commerce
(New York, NY, USA, 1999), ACM, pp. 129–139.

34. Nielsen, J. B., Nordholt, P. S., Orlandi, C., and Burra, S. S. A new
approach to practical active-secure two-party computation. In Advances in Cryp-
tology – Crypto 2012, pp. 682–700.

35. Nielsen, J. B., and Orlandi, C. LEGO for two-party secure computation. In
TCC 2009: 6th Theory of Cryptography Conference (Mar. 2009), O. Reingold, Ed.,
vol. 5444 of Lecture Notes in Computer Science, Springer, pp. 368–386.

36. Pinkas, B., Schneider, T., Smart, N. P., and Williams, S. C. Secure two-
party computation is practical. In Advances in Cryptology – ASIACRYPT 2009
(Dec. 2009), M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science,
Springer, pp. 250–267.

37. Shelat, A., and Shen, C.-H. Two-output secure computation with malicious
adversaries. In Advances in Cryptology – EUROCRYPT 2011 (May 2011), K. G.
Paterson, Ed., vol. 6632 of Lecture Notes in Computer Science, Springer, pp. 386–
405.

38. Shikfa, A., Önen, M., and Molva, R. Broker-based private matching. In Privacy
Enhancing Technologies - 11th International Symposium, PETS 2011, Waterloo,
ON, Canada, July 27-29, 2011 (2011), vol. 6794 of Lecture Notes in Computer
Science, Springer, pp. 264–284.

39. Valiant, L. Universal circuits (preliminary report). In STOC (1976), ACM Press,
pp. 196–203.

40. Woodruff, D. P. Revisiting the efficiency of malicious two-party computation. In
Advances in Cryptology – EUROCRYPT 2007 (May 2007), M. Naor, Ed., vol. 4515
of Lecture Notes in Computer Science, Springer, pp. 79–96.

41. Yao, A. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science (Oct. 1986), IEEE Computer
Society Press, pp. 162–167.


