
Using Graphic Turing Tests To Counter Automated DDoS
Attacks Against Web Servers∗

William G. Morein∗ Angelos Stavrou † Debra L. Cook∗

Angelos D. Keromytis∗ Vishal Misra∗ Dan Rubenstein†

∗Department of Computer Science †Department of Electrical Engineering
Columbia University in the City of New York
{wgm2001,angel,dcook,angelos,misra,danr}@cs.columbia.edu

ABSTRACT
We present WebSOS, a novel overlay-based architecture that pro-
vides guaranteed access to a web server that is targeted by a denial
of service (DoS) attack. Our approach exploits two key character-
istics of the web environment: its design around a human-centric
interface, and the extensibility inherent in many browsers through
downloadable “applets.” We guarantee access to a web server for a
large number of previously unknown users, without requiring pre-
existing trust relationships between users and the system.

Our prototype requires no modifications to either servers or brow-
sers, and makes use of graphical Turing tests, web proxies, and
client authentication using the SSL/TLS protocol, all readily sup-
ported by modern browsers. We use the WebSOS prototype to con-
duct a performance evaluation over the Internet using PlanetLab, a
testbed for experimentation with network overlays. We determine
the end-to-end latency using both a Chord-based approach and our
shortcut extension. Our evaluation shows the latency increase by a
factor of 7 and 2 respectively, confirming our simulation results.

Categories and Subject Descriptors
C.2.0 [Security and Protection]: Denial of Service; C.2.1 [Network
Topology]: Overlay Networks

General Terms
Security, Reliability.

Keywords
Graphic Turing Tests, Web Proxies, Java.

∗This work is supported in part by DARPA contract No. F30602-
02-2-0125 (FTN program) and by the National Science Foundation
under grant No. ANI-0117738 and CAREER Award No. ANI-
0133829, with additional support from Cisco and Intel Corpora-
tion. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not nec-
essarily reflect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

1. INTRODUCTION
The Web is increasingly being used for different kinds of ser-

vices and interactions with, and between humans. Beyond display-
ing static content such as home pages or academic papers, the web
is actively used for such diverse tasks as e-mail, banking, consumer
purchasing, marketing, stock-quote dissemination and trading, and
real-time communication. The wide availability of high-quality
browsers and servers, as well as programmers’ and users’ famil-
iarity with the tools and concepts behind web browsing ensure that
ongoing creation of additional services.

Such an environment provides a rich set of targets for motivated
attackers. This has been demonstrated by the large number of vul-
nerabilities and exploits against web servers, browsers, and applica-
tions. Traditional security considerations revolve around protecting
the network connection’s confidentiality and integrity, protecting
the server from break-in, and protecting the client’s private infor-
mation from unintended disclosure. To that end, several protocols
and mechanisms have been developed, addressing these issues in-
dividually. However, one area that has long been neglected is that
of service availability in the presence of denial of service (DoS)
attacks, and their distributed variants (DDoS).

Previous approaches that address the general network DoS prob-
lem [15, 9, 31] are reactive: they monitor traffic at a target location,
waiting for an attack to occur. Once the attack is identified, typi-
cally via analysis of traffic patterns and packet headers, filters may
be established in an attempt to block the offenders. The two main
problems with this approach are the accuracy with which legitimate
traffic can be distinguished from the DoS traffic, and the robustness
of the mechanism for establishing filters deep enough in the net-
work so that the effects of the attack are minimized.

We introduce WebSOS, an adaptation of the Secure Overlay Ser-
vices (SOS) architecture [20]. Our intent is to prevent congestion-
based DDoS attacks from denying any user’s access to web servers
targeted by those attacks. The novel aspects of WebSOS are (a) its
use of graphic Turing tests in lieu of strong client authentication
(as was proposed in SOS) to distinguish between human users and
automated attack zombies, and (b) its transparency to browsers and
servers, by taking advantage of browser extensibility.

In WebSOS, the portion of the network immediately surround-
ing attack targets (i.e., the web servers) to be protected is protected
by high-performance routers that aggressively filter and block all
incoming connections from hosts that are not approved, as shown
in Figure 1. These routers are “deep” enough in the network (typ-
ically in an ISP’s POP, as we discuss in Section 3) that the attack
traffic does not adversely impact innocuous traffic. The identities
of the small set of nodes that are approved at any particular time

is kept secret so that attackers cannot try to impersonate them to
pass through the filter. These nodes are picked from a set of nodes
that are distributed throughout the wide area network. This super-
set forms a secure overlay: any transmissions that wish to traverse
the overlay must first be validated at any of the entry points of the
overlay using a Graphic Turing test to distinguish humans from at-
tack scripts [10]. Once inside the overlay, the traffic is tunneled
securely to one of the approved (and secret from attackers) loca-
tions that can then forward the validated traffic through the filtering
routers to the target. Thus, there are two main principles behind
our design. The first principle is the elimination of communication
pinch-points, which constitute attractive DoS targets, via a combi-
nation of filtering and overlay routing to obscure the identities of
the sites whose traffic is permitted to pass through the filter. The
second is the ability to recover from random or induced failures
within the forwarding infrastructure or the secure overlay nodes.

WebSOS is the first instantiation of the SOS architecture. We
use this instantiation to evaluate the performance of the underlying
overlay routing mechanism both in a local area scenario and over
the Internet using the PlanetLab testbed [27]. The results show that
the average increase in end-to-end latency is a factor of 2 beyond
what is achieved using the standard web infrastructure. We believe
this modest increase is an acceptable alternative to providing no
service. Such a service can be used on an as-needed basis, and
hence need not impact performance when no attack is in progress.
These results validate our simulation analyses, where we used real
ISP topologies to determine the added average latency imposed by
the WebSOS mechanism.

1.1 WebSOS Architectural Scope
DoS attacks can take many forms, depending on the resource the

attacker is trying to exhaust. For example, an attacker can try to
cause the web server to perform excessive computation, or exhaust
all available bandwidth to and from the server. In all forms, the at-
tacker’s goal is to deny use of the service to other users. Apart from
the annoyance factor, such an attack can prove particularly damag-
ing for time- or life-critical services (e.g., tracking the spread of
an real-world epidemic), or when the attack persists over several
days1. Of particular interest are link congestion attacks, whereby
attackers identify “pinch” points in the communications substrate
and render them inoperable by flooding them with large volumes
of traffic. An example of an obvious attack point is the location (IP
address) of the destination that is to be secured, or the routers in
its immediate network vicinity; sending enough attack traffic will
cause the links close to the destination to be congested and drop all
other traffic. It is such attacks that WebSOS was designed to ad-
dress. Solving the much harder general denial-of-service problem
where attackers could potentially have enough resources to phys-
ically partition a network is not addressed in this paper. Further-
more, we do not consider algorithmic denial of service attacks [8].

We assume that attackers are smart enough to exploit features
of the architecture that are made publicly available, such as the
set of nodes that form the overlay. However, we do not specifi-
cally consider how to protect the architecture against attackers who
can infiltrate the security mechanism that distinguishes legitimate
traffic from (illegitimate) attack traffic: we assume that commu-
nications between overlay nodes remain secure so that an attacker
cannot send illegitimate communications, masking them as legiti-
mate. In addition, it is conceivable that more intelligent attackers
could monitor communications between nodes in the overlay and,

1In one instance of a persistent DoS attack, a British ISP was
forced out of business because it could not provide service to its
customers.

based on observed traffic statistics, determine additional informa-
tion about the current configuration. We leave it as future work
to explore how WebSOS can be used to protect against attacks by
such highly specialized and sophisticated attackers. Some work in
that direction can be found in [21].

1.2 Paper Organization
The remainder of this paper is organized as follows. Section 2

gives an overview of Secure Overlay Services (SOS) and graphic
Turing tests, and discusses the specifics of the WebSOS architec-
ture. In Section 3 we present our simulation results, using real
ISP topologies. Section 4 presents details of our prototype imple-
mentation, while Section 5 contains our performance evaluation.
Section 6 discusses other work in DoS detection, prevention, and
mitigation. Finally, Section 7 concludes the paper.

2. THE WEBSOS ARCHITECTURE
Because our approach is based on the Secure Overlay Services

(SOS) [20] architecture, we first highlight its important aspects.
We also briefly describe Graphic Turing tests, which implement
human-to-overlay authentication. We close this section with a de-
scription of WebSOS.

2.1 Overview of SOS
Fundamentally, the goal of the SOS infrastructure is to distin-

guish between authorized and unauthorized traffic. The former is
allowed to reach the destination, while the latter is dropped or is
rate-limited. Thus, at a very basic level, SOS requires the func-
tionality of a firewall “deep” enough in the network that the access
link to the target is not congested. This imaginary firewall performs
access control by using protocols such as IPsec [19]. This gener-
ally pre-supposes the presence of authentication credentials (e.g.,
X.509 [5] certificates) that a user can use to gain access to the over-
lay. We consider this one of the the largest drawbacks to SOS, as it
precludes casual access to a web server by anonymous, yet benign
users.

Beacon

Servlet
Secret

overlay
nodes

SOAP

Filtered region

Beacon

Servlet
Secret

Beacon

Servlet
Secret

SOAP

Source
Point

Target

Figure 1: Basic SOS architecture. SOAP stands for Secure Overlay
Access Point, and represents an entry point to the SOS overlay. SOS
nodes can serve any of the roles of SOAP, Beacon, or Secret Servlet.

Since traditional firewalls themselves are susceptible to DoS at-
tacks, what is really needed is a distributed firewall [3, 16]. To
avoid the effects of a DoS attack against the firewall connectivity,
instances of the firewall are distributed across the network. Expen-
sive processing, such as cryptographic protocol handling, is farmed
out to a large number of nodes. However, firewalls depend on topo-
logical restrictions in the network to enforce access-control poli-
cies. In what we have described so far, an attacker can launch a

DoS attack with spoofed traffic purporting to originate from one of
these firewalls, whose identity cannot be assumed to remain forever
secret. The insight of SOS is that, given a sufficiently large group of
such firewalls, one can select a very small number of these as the
designated authorized forwarding stations: only traffic forwarded
from these will be allowed through the filtering router. In SOS,
these nodes are called secret servlets. All other firewalls must for-
ward traffic for the protected site to these servlets. Figure 1 gives
a high-level overview of a SOS infrastructure that protects a target
node or site so that it only receives legitimate transmissions. Note
that the secret servlets can change over time, and that multiple sites
can use the same SOS infrastructure.

16+1: 17
16+2: 22
16+4: 22
16+8: 25
16+16: 1

1

3

10

12

17

22

30

25

16

7

7+1 : 10
7+2: 10
7+4: 12
7+8: 16
7+16: 25

17+1: 22
:
:

m = 5

Figure 2: Chord-based overlay routing.

To route traffic inside the overlay, SOS uses Chord [34], which
can be viewed as a routing service that can be implemented atop
the existing IP network fabric, i.e., as a network overlay. Consis-
tent hashing [17] is used to map an arbitrary identifier to a unique
destination node that is an active member of the overlay.

In Chord, each node is assigned a numerical identifier (ID) via
a hash function in the range [0, 2m] for some pre-determined value
of m. The nodes in the overlay are ordered by these identifiers. The
ordering is cyclic (i.e., wraps around) and can be viewed conceptu-
ally as a circle, where the next node in the ordering is the next node
along the circle in the clockwise direction.

Each overlay node maintains a table that stores the identities of
m other overlay nodes. The ith entry in the table is the node whose
identifier x equals or, in relation to all other nodes in the over-
lay, most immediately follows x + 2i−1((mod 2m)), as shown
in Figure 2. When overlay node x receives a packet destined for
ID y, it forwards the packet to the overlay node in its table whose
ID precedes y by the smallest amount. In the example, if node 7
receives a packet whose destination is the identifier 20, the packet
will route from 7 to 16 to 17. When the packet reaches node 17, the
next node in the overlay is 22, and hence node 17 knows that 22 is
responsible for identifier 20. The Chord algorithm routes packets
around the overlay “circle”, progressively getting closer to the de-
sired overlay node. O(m) overlay nodes are visited. Typically, the
hash functions used to map nodes to identifiers do not attempt to
map two geographically close nodes to nearby identifiers. Hence,
it is often the case that two nodes with consecutive identifiers are
geographically distant from one another within the network.

The Chord service is robust to changes in overlay membership,
and each node’s list is adjusted to account for nodes leaving and
joining the overlay such that the above properties continue to hold.

SOS uses the IP address of the target (i.e., web server) as the
identifier to which the hash function is applied. Thus, Chord can
direct traffic from any node in the overlay to the node that the iden-
tifier is mapped to, by applying the hash function to the target’s
IP address. This node, where Chord delivers the packet, is not the
target, nor is it necessarily the secret servlet. It is simply a unique
node that will be eventually be reached, after up to m = log N
overlay hops, regardless of the entry point. This node is called the
beacon, since it is to this node that packets destined for the target
are first guided. Chord therefore provides a robust and reliable,
while relatively unpredictable for an adversary, means of routing
packets from an overlay access point to one of several beacons.

Finally, the secret servlet uses Chord to periodically inform the
beacon of the secret servlet’s identity. Should the servlet for a target
change, the beacon will find out as soon as the new servlet sends
an advertisement. If the old beacon for a target drops out of the
overlay, Chord will route the advertisements to a node closest to
the hash of the target’s identifier. Such a node will know that it is
the new beacon because Chord will not be able to further forward
the advertisement. By providing only the beacon with the identity
of the secret servlet, traffic can be delivered from any firewall to
the target by traveling across the overlay to the beacon, then from
the beacon to the secret servlet, and finally from the secret servlet,
through the filtering router, to the target. This allows the overlay
to scale for arbitrarily large numbers of overlay nodes and target
sites. Unfortunately, this also increases the communication latency,
since traffic to the target must be redirected several times across the
Internet. If the overlay only serves a small number of target sites,
regular routing protocols may be sufficient.

2.2 Graphic Turing Tests
In order to prevent automated attacks from breaching the overlay,

a CAPTCHA [37] visual test is implemented at the entry point of
the overlay to verify the presence of a human user. CAPTCHA
(Completely Automated Public Turing test to Tell Computers and
Humans Apart) is a program that can generate and grade tests that
most humans can pass, but automated programs cannot.

The particular CAPTCHA realization we use is GIMPY, which
concatenates an arbitrary sequence of letters to form a word and
renders a distorted image of the word as shown in Figure 3. GIMPY
relies on the fact that humans can read the words within the dis-
torted image and current automated tools cannot. The human au-
thenticates himself/herself by entering as ASCII text the same se-
quence of letters as what appears in the image. Updating the GIMPY
interface to WebSOS can be performed without modifying the other
architectural components.

Although recent advances in visual pattern recognition [24] can
defeat GIMPY, there is no solution to date that can recognize com-
plicated images or relation between images like Animal-PIX. Al-
though for demonstration purposes in our prototype, described in
Section 4, we use GIMPY, we can easily substitute it with any other
instance of graphic turing test.

2.3 Sequence of Operations in WebSOS
To illustrate the use of the WebSOS architecture by servers and

clients, we describe the steps both sides must undertake to protect
their communication channel:

• A site (target) installs a filter on a router in its immediate
vicinity and then selects a number of WebSOS nodes to act
as “secret servlets” that are allowed to forward traffic through

Figure 3: WebSOS implementation of user Web Challenge using
CAPTCHA. The challenge in this case is “fwst”.

the filter to the target site. Routers at the perimeter of the
site are instructed to only allow traffic from these servlets to
reach the internal of the site’s network. These routers are
powerful enough to do filtering using only a small number of
rules on incoming traffic without adversely impacting their
performance. In order to make guessing the identity of a se-
cret servlet for a particular target harder for the attacker, the
filtering mechanism uses packet fields with potentially high
entropy. For example, only GRE [12] packets from a par-
ticular source (the secret servlet) containing a specific 32-bit
value in the GRE Key field [11]. An attacker trying to slip at-
tack traffic through the filter must guess not only the current
servlet’s IP address, but the correct 32-bit key as well. Al-
though we expect 32 bits to be sufficient for this application,
we can easily use larger keys to avoid brute-force attacks.

• When a WebSOS node is informed that it will act as a secret
servlet for a site (and after verifying the authenticity of the
request, by verifying the certificate received during the SSL
exchange), it computes the key k for a number of well-known
consistent hash functions, based on the target site’s network
address. Each of these keys will identify a number of overlay
nodes that will act as beacons for that web server.

• Having identified the beacons, the servlets or the target will
contact them, notifying them of the servlets’ association with
a particular target. Beacons will store this information and
use it for traffic-forwarding purposes.

• A source that wants to communicate with the target contacts
a random overlay node, the Secure Overlay Access Point
(SOAP). After authenticating and authorizing the request via
the CAPTCHA test, the overlay node securely proxies all
traffic from the source to the target via one of the beacons.
The SOAP (and all subsequent hops on the overlay) can proxy
the HTTP request to an appropriate beacon in a distributed
fashion using Chord, by applying the appropriate hash func-
tion(s) to the target’s IP address to identify the next hop on
the overlay. To minimize delays in future requests, the client
is issued a short-duration X.509 certificate, bound to the SOAP
and the client’s IP address, that can be used to directly con-
tact the proxy-server component of the SOAP without requir-
ing another CAPTCHA test.

This scheme is robust against DoS attacks because if an access
point is attacked, the confirmed source point can simply choose an
alternate access point to enter the overlay. Any overlay node can
provide all different required functionalities (SOAP, Chord routing,

beacon, secret servlet). If a node within the overlay is attacked,
the node simply exits the overlay and the Chord service self-heals,
providing new paths over the re-formed overlay to (potentially new
sets of) beacons. Furthermore, no node is more important or sen-
sitive than others — even beacons can be attacked and are allowed
to fail. Finally, if a secret servlet’s identity is discovered and the
servlet is targeted as an attack point, or attacks arrive at the target
with the source IP address of some secret servlet, the target can
choose an alternate set of secret servlets.

Use of GRE for encapsulating the traffic between the secret servlet
and the filtering router can offer an additional benefit, if we also use
transparent proxies and IPsec for packet encapsulation between the
proxies (replacing SSL). In that implementation scenario, as far
as the target web server is concerned the HTTP/HTTPS connec-
tion from the browser was received directly. Thus, any return TCP
traffic will be sent directly to the browser’s IP address. Following
our discussion in Section 2.4, this asymmetric connection routing
will considerably improve the end-to-end latency and reduce the
load on the overlay network (less traffic to proxy). While asym-
metric routing was once considered potentially harmful, empirical
studies show that most of the long-haul traffic (e.g., non-local traf-
fic) over the Internet exhibits high asymmetry [2]. Most of the
arguments against this asymmetry arise from the difficulty of con-
figuring packet classification mechanisms, which preclude stateful
filtering and required synchronized configuration of multiple nodes
(those the traffic may traverse). This would not be a problem in our
case, as the asymmetry is exhibited far enough in the network (be-
yond the filtering router) that the local administrative tasks, such
as configuring a firewall, remain unaffected. IPsec and transparent
proxying techniques are well-known and (in the case of transparent
proxies) widely used, thus we believe such an implementation is
not unfeasible. For the purposes of this paper, we decided to im-
plement the straight-forward version of WebSOS; development of
the optimized version remains in our plans for future work.

In [20], the authors performed a preliminary analysis using sim-
ple networking models to evaluate the likelihood that an attacker
is able to prevent communications to a particular target. This like-
lihood was determined as a function of the aggregate bandwidth
obtained by an attacker through the exploitation of compromised
systems. The analysis included an examination of the capabilities
of static attackers who focus all their attack resources on a fixed
set of nodes, as well as attackers who adjust their attacks to “chase
after” the repairs that the SOS system implements when it detects
an attack. The authors demonstrated that even attackers that are
able to launch massive attacks are very unlikely to prevent success-
ful communication. For instance, attackers capable of launching
debilitating attacks against 50% of the nodes in the overlay have
roughly one chance in one thousand of stopping a given commu-
nication from a client who can access the overlay through a small
subset of overlay nodes. For more details on the analysis, see [20].

2.4 Forwarding Specifics
WebSOS uses SSL to provide two layers of encryption. First,

messages are encrypted end-to-end, so that only the end-points of
the exchange (user and web-server) can view the data actually be-
ing transmitted. Additionally, WebSOS uses SSL over each hop of
the overlay as a means of verifying the authenticity of the previ-
ous hop. No special functionality is required by the overlay nodes
to perform these tasks; the user browser simply has to be supplied
with the appropriate certificate(s) from the WebSOS administrator.

In the original SOS architecture, the path established from the
user to the target through the overlay was unidirectional. Traffic
in the reverse direction could also traverse the overlay, by revers-

ing the roles of user and target. In that case, the path taken by
requests and responses would be different. Alternatively, traffic
from the target to the user could be sent directly (without using
the overlay); this is usually not a problem, since most communica-
tion channels are full-duplex and, in the event of a DDoS attack,
only the downstream portion (to the target) is congested. An addi-
tional benefit of this asymmetric approach is reduced latency, since
most client/server traffic (especially in web environments) is highly
asymmetric (i.e., clients receive a lot more information than they
transmit). This was possible because routing decisions in SOS are
made on a per-packet basis.

In WebSOS, routing decisions are made on a per-connection ba-
sis. Any subsequent requests over the same connection (when us-
ing HTTP 1.1) and any responses from the web server can take the
reverse path through the overlay. While this makes the implemen-
tation simpler, it also introduces increased latency, as the bulk of
the traffic will also traverse the overlay. We give some thoughts on
how to address this issue in Section 5.

16151413

1211109

8765

4321

Figure 4: Overlay nodes serving regions of a coordinate-space.

3. SIMULATION
To understand the impact of the overlay network on the routing

of packets between the source and target nodes, we have applied the
SOS algorithm to two models of ISP networks [7]. One model, in-
dicative of a U.S. topology, is derived from AT&T’s U.S. backbone
network. The other, indicative of a European topology, is derived
from Worldcom’s (now MCI’s) European backbone network. Re-
mote access points were excluded from the AT&T model, as were
connections from Worldcom’s European POPs to points outside the
geographical area. For each model, two algorithms for routing traf-
fic through the overlay were tested, one based on Chord, which uses
a random ordering of the overlay nodes, and a heuristic variation of
CAN that uses geographical ordering of the overlay nodes. In both
cases, we tested variations on how the beacons and servlets were
chosen in relation to each other, the target, and the source, e.g.,
requiring some minimum distance between the servlet and target.

We first give a brief description of CAN [28], and then discuss
the specifics of the simulation environment, such as ISP structure,
the distribution of overlay nodes across ISP Points of Presence
(POPs), and the selection strategies for beacons and secret servlets.

3.1 CAN
Like Chord, CAN uses a hash function to map overlay nodes

to identifiers. However, a CAN identifier maps a node to a region

within a d-dimensional space. Each overlay node contains a table
of overlay nodes responsible for neighboring areas in the coordi-
nate space. As shown in Figure 4, overlay node 7 would contain
pointers to nodes 3, 6, 8, and 11. In its basic form, CAN does not
assume any relationship between node positions of the coordinate
space and their geographical positions in the real world. A varia-
tion suggested in [28] that assigns positions within the coordinate
space being representative of the geography provided the basis for
the heuristic used in the model.

3.2 Network Layout
A POP-level representation of the ISP was used, where each POP

is assumed to consist of a hierarchy of routers as shown in Figure 5.
At the top level are routers with links to other POPs. At the lowest
level are links to client networks.

….

………

to clients
typically ≤ T3

to other pops
OC192

to other ISPs
bandwidth varies

OC48

OC3

Figure 5: ISP POP structure used in the simulation.

Latencies between POPs were estimated from a subset of known
latencies. Distances between POPs were estimated using airline
miles. Three routers were included at the second level and twelve at
the lowest level of each POP; however, for the statistics computed,
the exact number of routers within a POP was not relevant, only the
latency from the time a packet entered a router within a POP to the
time it left the POP was needed.

The model assumes that there is ample bandwidth between POPs
and that the choke points are the links to clients. All latencies and
distances to clients to their local POP are assigned the same value.

There were 19 POPs in the US model and 18 in the Europe
model. Overlay nodes participating in the overlay were evenly dis-
tributed across POPs, meaning each POP served the same number
of client nodes eligible to be overlay nodes. In the cases where
servlets and beacons were randomly chosen, this allowed each POP
to be equally likely to have a client site that was a servlet or bea-
con. In the cases where the servlet and beacon nodes were not
randomly chosen, there were more eligible nodes per POP than uti-
lized and the even distribution did not impact selection. A node was
not allowed to serve more than one purpose for a specific source-
target pair, for example, a node could not be both a beacon and a
servlet for the same target. Removing the restriction would result
in shorter routes on average because some scenarios tested would
pick the same node for both the servlet and beacon.

In each case, two client nodes served by each POP were included
in the overlay. Since each source / target pair was tested individ-
ually, at most two nodes per POP would be selected to serve the
functions of beacon and servlet. When ordering the overlay nodes
according to the geographic heuristic described below, designating
more than two nodes per POP could only change a route between a
source and target by possibly passing through a different client on
a given POP. When ordering the overlay nodes randomly and using
Chord as the routing algorithm for the overlay, the probability that
a client on a specific POP was picked as a beacon or servlet, or
was at a certain position in the overlay impacted the route. Since it
was assumed overlay eligible nodes were evenly distributed across
all POPs, having 2 versus 100 overlay nodes per POP would not
impact the probabilities and thus would not affect the results. The
node for the source was chosen to be a client on the same POP as
the source. The impact due to it being served by a different POP
than the source would be to add the cost of the normal route be-
tween the source and SOAP to the cost of the route between the
SOAP and target.

3.3 Routing Algorithms
In SOS, traffic from a source to a target utilizes a route which

contains the following sequence of nodes in order: source, access
point, beacon, servlet and target. Normal routing is used to reach
the SOAP. Also, since the beacon knows the specific servlet for the
target, and the servlet knows the location of the target, normal rout-
ing is used between the beacon and servlet, and between the servlet
and target. An overlay route is used between the SOAP and bea-
con. The increase in the route length over that of the normal route
between the source and target is due not only to the requirement
that the route pass through specific nodes, but also due to the need
to route through an overlay network between the SOAP and bea-
con as opposed to using the normal route between the two nodes.
For normal routing, each node in the model contained a routing ta-
ble populated via Dijkstra’s algorithm, using minimum hops as the
criteria for shortest path. Each node in the overlay network also
contained a table with the destination address and overlay node id
of a subset of overlay nodes. The table was populated based on the
routing algorithms described below.

A routing algorithm for use in overlays is required to send traffic
between the SOAP and beacon. The Chord algorithm was utilized
in the first set of experiments. The overlay nodes where randomly
ordered. The tables within each overlay node were populated using
the method described previously involving powers of 2. The size
of a node’s table is O(log n), where n is the size of the overlay.

The second set of experiments used a heuristic which divided the
POPs into geographical areas. This method is based on modifica-
tions suggested to the basic algorithm for CAN. For a specific area,
A, a node nA was chosen as the area’s representative. Each nA was
an entry in each overlay node’s table. In addition, if ni is an over-
lay node in area A, ni’s table would include entries for each nj in
A, i 6= j. Thus an overlay node maintained pointers to every other
overlay node in the same geographical area and to one overlay node
in each other geographical area. For an overlay of size n, the size
of a node’s table is O(n/5) + #(areas), which is O(n/5) when n
is large compared to the number of areas. The US model involved
6 areas, one contained 2 POPs and the other contained 3 or 4 POPs
each. The Europe model contained 4 areas with 4 to 5 POPs each.

3.4 Beacon/Servlet Selection Scenarios
Seven source-target pairs were chosen in each of the two mod-

els. They were selected to represent a variation in source-target
relations. Factors considered when selecting the pairs included the

distance between cities, whether they were served by neighboring
POPs and the level of connectivity for the POP. In all cases a servlet
and beacon for a specific target were not permitted to be the same
node and neither could serve as a SOAP .

For each model and each routing algorithm, the normal route
between each source-target pair was computed then the following
eight scenarios were tested on each pair. In the scenarios, minimiz-
ing the number of hops refers to the number of hops as calculated
by normal routing.

1. Randomly select the servlet and beacon (100 trials per source-
target pair were run).

2. Select the servlet to minimize the number of hops between
the servlet and target, then select the beacon to minimize the
number of hops between the beacon and servlet, with the re-
striction that the servlet and beacon not be served by the same
POP.

3. Select the servlet to minimize the number of hops between
the servlet and target, then select the beacon to minimize the
number of hops between the beacon and source.

4. Select a servlet randomly from those approximately X miles
from the target then select a beacon randomly from those
approximately X miles from the servlet, where X was 1000
in the US model and 500 in the Europe model. In the case of
the Europe model, a few POPs did not have neighbors within
this distance, in which case the next closest available overlay
node was used.

The first scenario was used to obtain an understanding of the
impact when no selection criteria was utilized for the servlet and
beacon. This would be the simplest version to implement. The
second and third scenarios were aimed at keeping the intermediate
nodes in the route near the end points to determine if the route
between the source and target would then be similar to the normal
route. These two scenarios using minimum distance instead of hops
were tested on the US version, but the results were not noticeably
different from the scenarios using hops. The fourth scenario was
used to understand the impact of selecting the servlet and beacon
so they would be served by different POPs than the target, which
may be desired for diversity, but at the same time guaranteeing they
would be relatively close in an attempt to avoid an unnecessarily
long route.

Table 1: Average ratio: latency with SOS vs. normal routing.
US US Europe Europe
Chord CAN Chord CAN

scenario
1 random selection 4.51 4.16 5.69 4.11
2 min hops 3.45 2.4 3.25 2.54
3 min hops 7.19 1.75 6.77 1.74
4 diversity 5.18 4.08 5.6 2.88

3.5 Results
Results are presented in terms of the ratio of the measurement

for the SOS route to that of the normal route between the source
and target. The measurements are for one direction only, source
to target. Table 1 shows the ratio of the latency using SOS to the
latency expected when using normal routing. The scenario num-
ber corresponds to the previous list. These were averaged over all

source-target pairs. The worst case from all source-target pairs is
shown in Table 2. Table 3 indicates the increase in the number of
ISP POPs involved in a route compared to that of the normal route.

When using scenario 3 with the geographic heuristic, the servlet
was always selected from a node on the same POP as the target
and the beacon was selected from a node on the same POP as the
source and SOAP because there were eligible nodes at every POP.
This resulted in the SOS route being identical to the normal route
with the addition of a few detours to clients within the first and last
POPs in the route, thus it was expected to produce the best results
in terms of latency.

The results reported for random selection are averaged over 100
trials run per source-target pair. The actual increase in latency may
be much higher depending on the specific servlet and beacon cho-
sen. The greatest increase occurs when the source and target are
close together. The overlay route may involve points geographi-
cally far from the source and target, turning a normally short route
into one that may traverse every POP in the ISP at least once.
Among all trials involving random selection, the worst case in the
Europe model was an increase in latency 15 times that of the nor-
mal route between London and Paris when using Chord and 9.5
times when using the geographical heuristic. In the US model, the
worst case also involved a latency 15 times normal between NY
and Philadelphia when using Chord and 8.86 times when using the
geographical heuristic. For NY to Philadelphia, the worst case in-
crease using the geographical heuristic is approximately the same
as the average (8.76) when using Chord. The worst cases from all
trials involved latencies of 378ms using Chord and 230ms using the
geographical heuristic.

The number of POPs serves as a measure of the complexity of
the route but does not necessarily imply a physically long route
because several POPs may be geographically close. In scenario 3,
the beacon would be selected on the same POP as the SOAP. The
ratio for scenario 3 using Chord is high due to a couple of source-
target pairs in which the beacon’s overlay id was just prior to that of
the SOAP’s id, resulting in routing through several overlay nodes
in the path between the SOAP and beacon.

When using Chord, other variations for populating the overlay
node’s tables using powers of 3 and i + xj , where xj is the jth

number in the Fibonacci series, for j = 3,4,5.., were tested on a
subset of source-target pairs but had no noticeable impact on the
length of the route between the SOAP and beacon. A geographic
ordering of the overlay nodes was also tested while maintaining the
Chord routing. Nodes that were geographically close were assigned
IDs placing them close together on the overlay network. While this
shortened the route in cases where nodes X and Y were physically
close, a packet was being routed from X to Y using the overlay and
X was assigned a lower overlay id than Y; it resulted in a worst
case scenario when Y was assigned the overlay id just prior to X’s
because the packet would route to O(log n) overlay nodes before
reaching the one that knew about X.

3.6 Other Considerations
If the overlay nodes are placed within POPs, as opposed to clients’

networks, we eliminate the latency due to the connection between
the POP and client, and it could be more difficult to attack. In
contrast to a client’s LAN which may receive traffic for multiple
reasons and has a relatively low bandwidth connection to the POP,
a server dedicated to SOS and attached to a router within a POP
allows most invalid traffic to be filtered out in a high-capacity area.
However, the use of special purpose servers would result in fewer
potential overlay nodes. Furthermore, such servers would not re-
move the delay due to cross-country routes through the overlay.

Having the overlay network span multiple ISPs will increase the
latency of the SOS route. There will be a larger number of POPs
serving potential overlay nodes. Even if the overlay nodes are ge-
ographically distributed in the same manner as with one ISP, the
route between any pair of overlay nodes will increase on average
due to having to route between ISPs. When the overlay nodes are in
the same city but are served by different ISPs, having to route from
one ISP POP to another ISP’s POP, as opposed to routing between
nodes within the same POP, will increase latency. Furthermore, if
there is no peering point between the ISPs for that city, the route
will require a path to a different city.

4. IMPLEMENTATION
While the simulation results are encouraging, we felt that experi-

mentation in real networks was necessary to validate our approach.
To that end, we developed a prototype of WebSOS, consisting of
three main modules. The components are a communications mod-
ule, a WebSOS routing module, and an overlay routing module run-
ning on each node in the WebSOS overlay. The interactions of these
are shown in Figure 6.

Overlay
Routing
Module

SOS
Routing
Module

Communication
Module
(for packet
forwarding/
reception)

other nodes

Query/response
for next hop address

Query/response
for next hop address
in overlay

status
messages

Request from
user to target.

Figure 6: Software modules for the WebSOS implementation.

The communications module is responsible for forwarding HTTP
requests and responses among the nodes in the WebSOS overlay.
When a new proxy request (in the form of a new TCP connection)
is received, the communications module calls the WebSOS routing
module with the target’s destination address to obtain the address
of the next hop in the overlay. It then opens a new TCP connection
to that node and relays the received HTTP request. Any traffic re-
ceived in the opposite direction (i.e., the HTTP responses and web
content) are relayed back to the source. Authentication of the re-
questing node by the access point (SOAP) and by internal nodes is
accomplished through SSL. Authorized users and WebSOS overlay
nodes are issued X.509 [5] certificates signed by the SOAP, once
the user has succeeded in the CAPTCHA authentication.

The main WebSOS routing module receives requests from the
communications module and responds with the IP address of the
next node in the WebSOS overlay to which the request should be
forwarded. The module first checks whether the current node serves
a specific purpose (i.e., whether is it a beacon or secret servlet for

Table 2: Worst-case ratio: latency with SOS vs. normal routing.
US/Chord US/CAN Europe/Chord Europe/CAN

scenario
1 random selection — worst individual source-
target average over 100 trials

8.76 6.05 8.05 5.81

2 min hops 7.57 3.76 4.74 3.26
3 min hops 10.9 2.14 11.29 2.14
4 diversity 10.57 6.24 8.1 3.57

Table 3: Numbers of POPs in SOS routing vs. normal routing.
US/Chord US/CAN Europe/Chord Europe/CAN

scenario
1 random selection — worst individual source-
target average over 100 trials

4 3 4 2.5

2 min hops 2 1.5 2 1.5
3 min hops 5 1 4.2 1
4 diversity 3.5 2.5 4.2 2

that target). If the node serves no such purpose, the module calls
the overlay routing module to determine the next hop in the Web-
SOS overlay and passes the reply onto the communications module.
Presently, the WebSOS routing module is initialized with config-
uration data at startup indicating which nodes serve specific pur-
poses. We are working on an administrative module with increased
flexibility to avoid this static provisioning.

The overlay routing module is a general routing algorithm for
overlay networks. An implementation of Chord was written for the
initial tests. However, this module can be replaced with any other
routing algorithm, e.g., CAN [28]. It receives queries containing a
destination IP address (the web server’s) and responds with the IP
address of the next node in the overlay to which the request should
be forwarded. For maintenance of its own routing algorithm, the
Chord implementation also communicates with other overlay nodes
to determine their status, as described in [34].

When a request is issued by the browser, it is tunneled through
a series of SSL-encrypted links to the target, allowing the entire
transmission between the requester and target to be encrypted. The
SSL connections between WebSOS nodes are dynamically estab-
lished, as new requests are routed. One problem we ran into while
developing the WebSOS prototype is that web browsers do not pro-
vide support for the actual proxy request to be encrypted. To solve
this problem, we wrote a port forwarder that runs on the user’s sys-
tem, accepts plaintext proxy requests locally, and forwards them
using SSL to the access point node. This is implemented as a Java
applet that runs inside the browser itself. The Java applet is not con-
sidered part of the WebSOS overlay and is not trusted to perform
any access control decisions; it is simply a “helper” application.

Thus, to use WebSOS, an authorized user simply has to access
any SOAP, successfully respond to the CAPTCHA challenge, down-
load the applet, and set the browser’s proxy settings to the local-
host, as shown in Figure 7. Java applets typically are not allowed
to communicate with any host other than the one from which they
were downloaded, but this is not a problem in our case. If the user
is successful in his/her reply, the web server connects to a DBMS
system (local or remote) and associates a pair of RSA keys (a pri-
vate key and a certificate) with the host. This set of keys are unique
per IP and have an expiration time that can be configured by the
system administrator. The user is prompted to download a signed
applet that runs locally using one browser window and contacts

the web server via a temporary HTTPS connection to retrieve the
X.509 certificate.

The applet then starts listening for HTTP/HTTPS connections on
a local port (e.g., 8080) and establishes an SSL-tunnel connection
with the proxy server running on the SOAP (or elsewhere, since
the signed applet has the ability to connect to any server by chang-
ing the Java Policy files on the users’ machine). The proxy server
matches the X.509 certificate and the IP from client to the private
key obtained from the DBMS system and allows the connection
to be proxied. The only imposition on the user is that he/she must
change the Proxy settings of the local browser to point to the socket
that listens for the applets.

Initial prototyping of the communications module used Apache,
whose proxy module was modified to query the routing module
for the next hop. This worked well when unencrypted HTTP re-
quests were issued by the browser. However, when we encountered
the requirement for end-to-end authentication and encryption, we
changed the implementation to use a stand-alone proxy server in-
stead of Apache.

We intend to expand the implementation to include additional
modules addressing the administration and maintenance of the over-
lay. A centralized administration module will be used to set node
characteristics in real time, including assigning specific roles (bea-
con, SOAP, secret servlet) to nodes, and changing the operational
status of nodes. A maintenance module running on each node will
check the status of all nodes in the WebSOS overlay and provide
updates to both the main and overlay routing modules in order for
routing to be adjusted. This module will also serve as the inter-
face to centralized administration by receiving updates regarding a
node’s function and status, and passing the updates to the appropri-
ate routing module.

An adaptation of the initial implementation was created, to im-
prove performance: rather than transporting the request and re-
sponse through the full overlay network, only routing information
travels through the overlay. As before, the requester makes a proxy
request to the SOAP. At that point, the SOAP sends a UDP mes-
sage into the overlay, specifying the target. The message is routed
to the beacon, which responds directly to the SOAP with informa-
tion on the secret servlet for that target. The SOAP then connects to
the servlet, which proxies the request as before, in effect creating a
shortcut through the overlay.

Figure 7: WebSOS client session initiation diagram.

The SOAP caches the servlet information for use in future re-
quests. That information is timed out after a period of time to allow
for changes to propagate correctly. The same basic UDP protocol
is used by servlets to announce their presence to (and periodically
update) the beacons for the various targets.

5. EXPERIMENTAL EVALUATION
In order to quantify the overhead associated with use of Web-

SOS, we created a simple topology running on the local network
(100 Mbit fully-switched Ethernet). For our local-area network
overlay, we used 10 commodity PCs running Linux Redhat 7.3.
We measured the time-to-completion of https requests. That is, we
measured the elapsed time starting when the browser initiates the
TCP connection to the destination or the first proxy, to the time all
data from the remote web server have been received. We ran this
test by contacting 3 different SSL-enabled sites: login.yahoo.com,
www.verisign.com, and the Columbia course bulletin board web
service (at https://www1.columbia.edu/sec/bboard).
For each of these sites, we measured the time-to-completion for
a different number of overlay nodes between the browser and the
target (remote web server).

The browser was located on a separate ISP The reason for this
configuration was to introduce some latency in the first-hop con-
nection (from the browser to the SOAP), thus simulating (albeit us-
ing a real network) an environment where the browsers have slower
access links to the SOAPs, relative to the links connecting the over-
lay nodes themselves (which may be co-located with core routers).
By locating all the overlay nodes in the same location, we effec-
tively measure the aggregate overhead of the WebSOS nodes in the
optimal (from a performance point of view) case.

Table 4 shows the results for the case of 0 (browser contacts re-
mote server directly), 1, 4, 7, and 10 overlay nodes. The times re-
ported are in seconds, and are averaged over several HTTPS GET
requests of the same page, which was not locally cached. For
each GET request, a new TCP connection was initiated by the
browser. The row labeled “Columbia BB (2nd)” shows the time-
to-completion of an HTTPS GET request that uses an already-
established connection through the overlay to the web server, using
the HTTP 1.1 protocol.

As the figure shows, WebSOS increases the end-to-end latency
between the browser and the server by a factor of 2 to 3. These
results are consistent with our simulations of using SOS in an ISP
topology, where the latency between the different overlay nodes
would be small, as discussed in Section 3. The increase in latency
can be primarily attributed to the network-stack processing over-
head and proxy processing at each hop. It may be possible to use
TCP splicing [6] or similar techniques to reduce connection han-
dling overhead, since WebSOS performs routing on a per-request
basis. Also, in the experiments we ran, we did not make use of the
asymmetric routing option possible with the use of GRE as both
a filtering and an encapsulation mechanism, as discussed in Sec-
tion 2.3.

Furthermore, there is an SSL-processing overhead for the inter-
overlay communications. A minor additional cryptographic over-
head, relative to the direct access case, is the certificate validation
that the SOAPs have to perform, to determine the client’s author-
ity to use the overlay, and the SSL connection between the proxy
running on the user’s machine and the SOAP. As shown in [22],
such overheads are typically dominated by the end-to-end commu-
nication overheads. Use of cryptographic accelerators can further
improve performance in that area. One further optimization is to
maintain persistent SSL connections between the overlay nodes.
However, this will make the task of the communication module
harder, as it will have to parse HTTP requests and responses arriv-
ing over the same connection in order to make routing decisions.

Table 5 shows the same experiment using PlanetLab [27], a wide-
area overlay network testbed. The PlanetLab nodes are distributed
in academic institutions across the country, and are connected over
the Internet. We deployed our WebSOS proxies PlanetLab and ran
the exact same tests. Naturally, the direct-contact case remains the
same. We see that the time-to-completion in this scenario increases
by a factor of 2 to 10, depending on the number of nodes in the
overlay. In each case, the increase in latency over the local-Ethernet
configuration can be directly attributed to the delay in the links be-
tween the WebSOS nodes. While the PlanetLab configuration al-
lowed us to conduct a much more realistic performance evaluation,
it also represents a worst-case deployment scenario for WebSOS:
typically, we would expect WebSOS to be offered as a service by
an ISP, with the (majority of) WebSOS nodes located near the core

Table 4: Latency (in seconds) when contacting various SSL-enabled web servers directly and with different numbers of (intermediate) overlay nodes
over the local-Ethernet network.

Server Direct 1 node 4 nodes 7 nodes 10 nodes
Yahoo! 1.39 2.06 2.37 2.79 3.33
Verisign 3.43 4.22 5.95 6.41 9.01
Columbia BB 0.64 0.86 1.06 1.16 1.21
Columbia BB (2nd) 0.14 0.17 0.19 0.20 0.25

Table 5: Latency (in seconds) when contacting various SSL-enabled web servers directly and with different numbers of (intermediate) overlay nodes
using the PlanetLab network.

Server Direct 1 node 4 nodes 7 nodes 10 nodes
Yahoo! 1.39 3.15 5.53 10.65 14.36
Verisign 3.43 5.12 7.95 14.95 22.82
Columbia BB 0.64 1.01 1.45 3.14 5.07
Columbia BB (2nd) 0.14 0.23 0.28 0.57 0.72

of the network. Using PlanetLab, the nodes are distributed in (ad-
mittedly well-connected) end-sites. We would expect that a more
commercial-oriented deployment of WebSOS would result in a cor-
responding decrease in the inter-overlay delay. On the other hand,
it is easier to envision end-site deployment of WebSOS, since it
does not require any participation from the ISPs.

Finally, while the additional overhead imposed by WebSOS can
be significant, we have to consider the alternative: no web service
while a DoS attack against the server is occurring. While an in-
crease in end-to-end latency by a factor of 5 (or even 10, in the
worst case) is considerable, we believe it is more than acceptable
in certain environments and in the presence of a determined attack.

Table 6 shows the results when the shortcut implementation was
tested on the PlanetLab testbed. This variant provides significant
performance improvements, particularly on subsequent requests for
the same site, because of the caching. To simulate the effects of an
attack on individual nodes in the overlay, we simply brought down
specific nodes. The system healed itself within 10 seconds.

Table 6: Latency (in seconds) when contacting various SSL-enabled
web servers directly and while using the shortcut implementation of
the WebSOS system. The testing was performed on a 76 node subset of
the PlanetLab testbed using the Chord overlay. The hops to the bea-
con ranged from 4 to 8 and did not have a significant effect on latency.
The cached column refers to subsequent requests using the same SOAP,
whereupon the Secret Servlet information has been cached.

Server Direct
Original
Request

Cached
Requests

Yahoo! 1.39 4.15 3.67
Verisign 3.43 7.33 6.77
Columbia BB 0.64 3.97 3.43
Columbia BB (2nd) 0.14 0.55 0.56

6. RELATED WORK
As a result of its increased popularity and usefulness, the In-

ternet contains both interesting targets and enough malicious and
ignorant users that DoS attacks are simply not going to disappear

on their own; indeed, although the press has stopped reporting such
incidents, recent studies have shown a surprisingly high number
of DoS attacks occurring around the clock throughout the Internet
[23]. Worse, the Internet is increasingly being used for time-critical
applications (e.g., electricity production monitoring and coordina-
tion between different generators). A further compounding factor is
the susceptibility of the basic protocols (i.e., IP and TCP) to denial
of service attacks [32, 14].

The need to protect against or mitigate the effects of DoS attacks
has been recognized by both the commercial and research world.
Some work has been done toward achieving these goals, e.g., [15,
9, 31, 30, 13, 33, 35]. However, these mechanisms focus on de-
tecting the source of DoS attacks in progress and then countering
them, typically by “pushing” some filtering rules on routers as far
away from the target of the attack (and close to the sources) as
possible. Thus, they fall into this class of approaches that are re-
active. The motivation behind such approaches has been twofold:
first, it is conceptually simple to introduce a protocol that will be
used by a relatively small subset of the nodes on the Internet (i.e.,
ISP routers), as opposed to requiring the introduction of new pro-
tocols that must be deployed and used by end-systems. Second,
these mechanisms are fairly transparent to protocols, applications,
and legitimate users. Unfortunately, these reactive approaches by
themselves are not always adequate solutions.

• Methods that filter traffic by looking for known attack pat-
terns or statistical anomalies in traffic patterns (e.g., [29])
can be defeated by changing the attack pattern and masking
the anomalies that are sought by the filter. Furthermore, sta-
tistical approaches will likely filter out valid traffic as well.
Since the Internet spans multiple administrative domains and
(legal) jurisdictions, it is often very difficult, if not outright
impossible, to shut down an attack by contacting the admin-
istrator or the authorities closest to the source. In any case,
such action cannot be realistically delivered in a timely fash-
ion (often taking several hours). Even if this were possible,
it is often the case that the source of the attack is not the real
culprit but simply a node that has been remotely subverted
by a cracker. The attacker can just start using another com-
promised node.

• Using a “pushback”-like mechanism, such as the one de-

scribed in [15], to counter a DoS attack makes close coopera-
tion among different service providers necessary: since most
attacks use random source IP addresses (and since ingress
filtering is not widely used), the only reliable packet field
that can be used for filtering is the destination IP address (of
the target). If filters can only be pushed “halfway” through
the network between the target and the sources of the at-
tack, the target runs the risk of voluntarily cutting off or
adversely impacting (e.g., by rate-limiting) its communica-
tions with the rest of the Internet. The accuracy of such fil-
tering mechanisms improves dramatically as the filters are
“pushed” closer to the actual source(s) of the attack. Thus,
it will be necessary for providers to allow other providers,
or even end-network administrators, to install filters on their
routers. Apart from the very realistic possibility of abuse, it
is questionable whether such collaboration can be achieved
to the degree necessary.

The same concerns hold for the case of collaborative action by
the ISPs: even easy to implement mechanisms such as ingress fil-
tering, that could reduce or even eliminate spoofed-address DoS
attacks, are still not in wide use. We believe it is rather unrealis-
tic to expect that cooperative providers would even establish static
filters to allow legitimate (paying) clients to tunnel through their in-
frastructure with any assurance of quality of service, and much less
so for the case of mobile or remote clients (as may be the case for
emergency teams). The D-WARD system [29] monitors outgoing
traffic from a given source network and attempts to identify attack
traffic by comparing against models of reasonable congestion con-
trol behavior. The amount of throttling on suspicious traffic is pro-
portional to its deviation from the expected behavior, as specified
by the model. An extension of D-WARD, COSSACK [25], allows
participating agents to exchange information about observed traffic.

An approach that uses BGP to propagate source addresses that
can be used for filtering out source-spoofed packets inside the Inter-
net cote [26] places undue burden on the core and is useful only in
weeding out spoofed packets; unfortunately, the majority of DDoS
attacks do not use spoofed packets.

[18] proposes using Class-Based Queuing on a web load-balancer
to identify misbehaving IP addresses and place them in lower pri-
ority queues. However, most DDoS attacks use spoofed IP ad-
dresses that vary over time, thus defeating classification. Even if
the same address is used, the amount of state that the load-balancer
needs to keep may be prohibitive. Furthermore, many of the DDoS
attacks simply cause congestion to the web server’s access link.
To combat that, the load-balancer would have to be placed closer
to the network core. Not only would this further compound the
state-explosion problem, but such detailed filtering and especially
state-management on a per-source-IP address basis can have per-
formance implications at such high speeds.

Another approach to mitigating DoS attacks against information
carriers is to massively replicate the content being secured around
the entire network. To prevent access to the replicated information,
an attacker must attack all replication points throughout the entire
network — a task that is considerably more difficult than attack-
ing a small number of, often co-located, servers. Replication is
a promising means to preserve information that is relatively static,
such as news articles. However, there are several reasons why repli-
cation is not always an ideal solution. For instance, the information
may require frequent updates complicating large-scale coherency
(especially during DoS attacks), or may be dynamic by its very na-
ture (e.g., a live web-cast). Another concern is the security of the
stored information: engineering a highly-replicated solution with-
out leaks of information is a challenging endeavor.

An extension of the ideas in SOS appears in [1]. There, the two
main facets of the SOS architecture: filtering and overlay rout-
ing, are explored separately, and several alternative mechanisms
are considered. It is observed that in some cases, the various secu-
rity properties offered by SOS can still be maintained using mecha-
nisms that are simpler and more predictable. However, some second-
order properties, such as the ability to rapidly reconfigure the archi-
tecture in anticipation of or in reaction to a breach of the filtering
identity (e.g., identifying the secret servlet) are compromised.

The NetBouncer project [36] considers the use of client-legitimacy
tests for filtering attack traffic. Such tests include packet-validity
tests (e.g., source address validation), flow-behavior analysis, and
application-specific tests, including Graphic Turing Tests. How-
ever, since their solution is end-point based, it is susceptible to large
link-congestion attacks.

[4] examines several different DDoS mitigation technologies and
their interactions. Among their conclusions, they mention that re-
quiring the clients to do some work, can be an effective counter-
measure, provided the attacker does not have too many resources
compared to the defender.

7. CONCLUSIONS
We presented WebSOS, an architecture that allows legitimate

users to access a web server in the presence of a denial of ser-
vice attack. The architecture uses a combination of Graphic Turing
tests, cryptographic protocols for data origin authentication, packet
filtering, overlay networks, and consistent hashing to provide ser-
vice to casual web-browsing users. We discussed our prototype
implementation, which uses standard web proxying and authenti-
cation mechanisms built in all browsers. Our architecture requires
no changes to web servers, browsers, or existing protocols.

We conducted a performance evaluation of WebSOS over both a
local area network and over the Internet using PlanetLab, a testbed
for experimentation with network overlays and similar technolo-
gies. Our experiments show that, in a realistic but worst-case de-
ployment scenario, the end-to-end communication latency between
browser and server increases on the average by a factor of 7, with
a worst case of 10. We also implemented and evaluated a shortcut
optimization, which reduced the latency to a factor of 2. These re-
sults are consistent with our simulations. We also discussed other
optimizations. However, we believe that even at its current level,
the overhead imposed is acceptable for many critical environments
and applications.

Future work plans include completion and long-term deployment
of the WebSOS prototype on PlanetLab, development of the IPsec-
enabled prototype that allows for transparent proxying and asym-
metric traffic routing for improved performance, and more compre-
hensive performance measurements, over a longer period of time
and for a wider set of users and web sites.

8. ACKNOWLEDGEMENTS
Alexander Konstantinou’s NetCallback was used as a basis for

the forwarding code in the communications module. Abhinav Kamra
wrote the Chord implementation used for overlay routing.

9. REFERENCES
[1] D. G. Andersen. Mayday: Distributed Filtering for Internet

Services. In 4th USENIX Symposium on Internet
Technologies and Systems USITS, March 2003.

[2] L. Amini, H. Schulzrinne, and A. Lazar. Observations from
Router-level Internet Traces. In DIMACS Workshop on

Internet and WWW Measurement, Mapping and Modeling,
February 2002.

[3] S. M. Bellovin. Distributed Firewalls. ;login: magazine,
special issue on security, pages 37–39, November 1999.

[4] W. J. Blackert, D. M. Gregg, A. K. Castner, E. M. Kyle, R. L.
Hom, and R. M. Jokerst. Analyzing Interaction Between
Distributed Denial of Service Attacks and Mitigation
Technologies. In Proceedings of DISCEX III, pages 26–36,
April 2003.

[5] CCITT. X.509: The Directory Authentication Framework.
International Telecommunications Union, Geneva, 1989.

[6] A. Cohen, S. Rangarajan, and J. H. Slye. On the Performance
of TCP Splicing for URL-Aware Redirection. In USENIX
Symposium on Internet Technologies and Systems, 1999.

[7] D. Cook. Analysis of Routing Algorithms for Secure
Overlay Service. Computer Science Department Technical
Report CUCS-010-02, Columbia University, April 2002.

[8] S. A. Crosby and D. S. Wallach. Denial of Service via
Algorithmic Complexity Attacks. In Proceedings of the 12th
USENIX Security Symposium, pages 29–44, August 2003.

[9] D. Dean, M. Franklin, and A. Stubblefield. An Algebraic
Approach to IP Traceback. In Proceedings of the Network
and Dsitributed System Security Symposium (NDSS), pages
3–12, February 2001.

[10] S. Dietrich, N. Long, and D. Dittrich. Analyzing Distributed
Denial of Service Tools: The Shaft Case. In Proceedings of
USENIX LISA XIV, December 2000.

[11] G. Dommety. Key and Sequence Number Extensions to
GRE. RFC 2890, September 2000.

[12] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.
Generic Routing Encapsulation (GRE). RFC 2784, March
2000.

[13] M. T. Goodrich. Efficient Packet Marking forLArg-Scale IP
Traceback. In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS), pages
117–126, November 2002.

[14] L. Heberlein and M. Bishop. Attack Class: Address
Spoofing. In Proceedings of the 19th National Information
Systems Security Conference, pages 371–377, October 1996.

[15] J. Ioannidis and S. M. Bellovin. Implementing Pushback:
Router-Based Defense Against DDoS Attacks. In
Proceedings of the Network and Distributed System Security
Symposium (NDSS), February 2002.

[16] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith.
Implementing a Distributed Firewall. In Proceedings of
Computer and Communications Security (CCS), pages
190–199, November 2000.

[17] D. Karger, E. Lehman, F. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relievig Hot Spots on the
World Wide Web. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 654–663, May 1997.

[18] F. Kargl, J. Maier, and M. Weber. Protecting web servers
from distributed denial of service attacks. In World Wide
Web, pages 514–524, 2001.

[19] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. RFC 2401, Nov. 1998.

[20] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. In Proceedings of ACM SIGCOMM, pages
61–72, August 2002.

[21] A. D. Keromytis, J. Parekh, P. N. Gross, G. Kaiser, V. Misra,

J. Nieh, D. Rubenstein, and S. Stolfo. A Holistic Approach to
Service Survivability. In Proceedings of the ACM Survivable
and Self-Regenerative Systems Workshop, October 2003.

[22] S. Miltchev, S. Ioannidis, and A. D. Keromytis. A Study of
the Relative Costs of Network Security Protocols. In
Proceedings of USENIX Annual Technical Conference,
Freenix Track), pages 41–48, June 2002.

[23] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial-of-Service Activity. In Proceedings of the 10th
USENIX Security Symposium, pages 9–22, August 2001.

[24] G. Mori and J. Malik. Recognizing Objects in Adversarial
Clutter: Breaking a Visual CAPTCHA. In Computer Vision
and Pattern Recognition CVPR’03, June 2003.

[25] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and
R. Govindan. COSSACK: Coordinated Suppression of
Simultaneous Attacks. In Proceedings of DISCEX III, pages
2–13, April 2003.

[26] K. Park and H. Lee. On the Effectiveness of Route-based
PAcket Filtering for Distributed DoS Attack Prevention in
Power-law Internets. In Proceedings of ACM SIGCOMM,
pages 15–26, August 2001.

[27] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the
Internet. In Proceedings of the 1st Workshop on Hot Topics
in Networks (HotNets-I), October 2002.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACM SIGCOMM, August 2001.

[29] P. Reiher, J. Mirkovic, and G. Prier. Attacking DDoS at the
source. In Proceedings of the 10th IEEE International
Conference on Network Protocols, November 2002.

[30] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical Network Support for IP Traceback. In Proceedings
of the 2000 ACM SIGCOMM Conference, pages 295–306,
August 2000.

[31] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Network Support for IP Traceback. ACM/IEEE Transactions
on Networking, 9(3):226–237, June 2001.

[32] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and
D. Zamboni. Analysis of a Denial of Service Attack on TCP.
In IEEE Security and Privacy Conference, pages 208–223,
May 1997.

[33] A. Snoeren, C. Partridge, L. Sanchez, C. Jones,
F. Tchakountio, S. Kent, and W. Strayer. Hash-Based IP
Traceback. In Proceedings of ACM SIGCOMM, August
2001.

[34] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Application. In Proceedings of ACM
SIGCOMM, August 2001.

[35] R. Stone. CenterTrack: An IP Overlay Network for Tracking
DoS Floods. In Proceedings of the USENIX Security
Symposium, August 2000.

[36] R. Thomas, B. Mark, T. Johnson, and J. Croall. NetBouncer:
Client-legitimacy-based High-performance DDoS Filtering.
In Proceedings of DISCEX III, pages 14–25, April 2003.

[37] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using Hard AI Problems For Security. In
Proceedings of EUROCRYPT’03, 2003.

