
SOS: Secure Overlay Services
�

Angelos D. Keromytis
�

Vishal Misra
���

Dan Rubenstein
���

�
Department of Computer Science

�
Department of Electrical Engineering

Columbia University
New York, NY�

angelos,misra,danr � @cs.columbia.edu

ABSTRACT
Denial of service (DoS) attacks continue to threaten the reliability
of networking systems. Previous approaches for protecting net-
works from DoS attacks are reactive in that they wait for an attack
to be launched before taking appropriate measures to protect the
network. This leaves the door open for other attacks that use more
sophisticated methods to mask their traffic.

We propose an architecture called Secure Overlay Services (SOS)
that proactively prevents DoS attacks, geared toward supporting
Emergency Services or similar types of communication. The archi-
tecture is constructed using a combination of secure overlay tun-
neling, routing via consistent hashing, and filtering. We reduce the
probability of successful attacks by (i) performing intensive filter-
ing near protected network edges, pushing the attack point perime-
ter into the core of the network, where high-speed routers can han-
dle the volume of attack traffic, and (ii) introducing randomness
and anonymity into the architecture, making it difficult for an at-
tacker to target nodes along the path to a specific SOS-protected
destination.

Using simple analytical models, we evaluate the likelihood that
an attacker can successfully launch a DoS attack against an SOS-
protected network. Our analysis demonstrates that such an archi-
tecture reduces the likelihood of a successful attack to minuscule
levels.

Categories and Subject Descriptors
C.2.0 [Security and Protection]: Denial of Service; C.2.1 [Network
Topology]: Overlay Networks

General Terms
Security, Reliability.
�
This material is supported in part by DARPA contract No.

F30602-02-2-0125 (FTN program) and by the National Science
Foundation under grant No. ANI-0117738 and CAREER Award
No. ANI-0133829. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’02, August 19-23, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-570-X/02/0008 ...$5.00.

Keywords
Network Security, Denial of Service Attacks, Overlay Networks.

1. INTRODUCTION
In the immediate aftermath of 9/11 events in New York City,

the Internet was used to facilitate communication between family
members and friends, as the phone network was overwhelmed1. It
does not require a great leap of faith to imagine using the Internet as
a communication medium for crisis and emergency response teams.
In particular, the network could be used to carry communications
between widely dispersed “static” sites (e.g., various federal, state,
and city agencies) and (semi-) roaming stations and users. In such
an environment, the communication path between the various sites
and the emergency response teams (ERTs) needs to be kept clear
of interference such as denial of service (DoS) attacks: attacks that
attempt to overwhelm the processing or link capacity of the target
site (or routers that are topologically close) by saturating it (them)
with bogus packets. Such attacks on a network could seriously
disrupt the rescue and recovery effort at minimal cost and danger
to the attacker. Yet the Internet, both in its current form and in
the form that it will likely evolve into the future, will remain a
fundamentally open network. Thus, we cannot reasonably expect
any one entity to effectively police and control it.

A proposal to build a completely separate network is under con-
sideration by the US government (appropriately named “GovNet”).
Such a network would have a high deployment and maintenance
cost, and would likely fall behind the general-purpose Internet as
new technologies are discovered and deployed. The network secu-
rity community is also doubtful of the claims of increased security
that such a separate network would entail. It is therefore a worth-
while endeavor to consider building a secure infrastructure either
inside or upon the existing Internet.

In this paper, we address the problem of securing communica-
tion on top of today’s existing IP infrastructure from DoS attacks,
where the communication is between a pre-determined location and
users, located anywhere in the wide-area network, who have autho-
rization to communicate with that location. We focus our efforts on
protecting a site that stores information that is difficult to replicate
due to security concerns or due to its dynamic nature. An example
is a database that maintains timely or confidential information such
as building structure reports, intelligence, assignment updates, or
strategic information. We assume that there is a pre-determined
subset of clients scattered throughout the wide-area network who
require (and should have) access to this information. These users�
In addition to the well-documented increase in email traffic, the

Computer Science Department at Columbia University set up Voice
over IP gateways that worked flawlessly when the telephone net-
work came to a standstill.

in the field (emergency workers, government agents, police, etc.)
should be able to access this information from any location (i.e.,
any IP address) within the wide area network, since it is not always
possible to predict their locations when emergencies strike.

We also assume that there is a set of users that want to prevent
access to this information, and will launch DoS attacks upon any
network points whose jamming will achieve this goal. The goal of
the attackers is to identify any “pinch” points in the communica-
tions substrate and render them inoperable by flooding them with
large volumes of traffic. An example of an obvious attack point is
the location (IP address) of the destination that is to be secured, or
the routers in its immediate network vicinity.

We should stress that our approach does not solve the general
DoS problem (e.g., the problem of distinguishing between good-
and bad-intentioned requests to a web server such as Google). We
are interested in classes of communication where both participants
are known to each other. While our work was motivated by the
ERT scenario, it is equally applicable to any other environment
where both parties have some form of pre-established trust rela-
tionship (e.g., telecommuting, corporate Intranets, subscribers to a
news website, etc.).

Previous approaches that address this problem are reactive: they
monitor traffic at a target location, waiting for an attack to occur.
After the attack is identified, typically via analysis of traffic patterns
and packet headers, filters are established in an attempt to block
the offenders. The main two problems with this approach are the
accuracy with which legitimate traffic can be distinguished from the
DoS traffic, and the robustness of the mechanism for establishing
filters deep enough in the network (away from the target) so that
the effects of the attack are minimized.

Our approach is proactive. In a nutshell, the portion of the net-
work immediately surrounding the target (location to be protected)
aggressively filters and blocks all incoming packets whose source
addresses are not “approved”. The small set of source addresses
(potentially as small as 2-3 addresses) that are “approved” at any
particular time is kept secret so that attackers cannot use them to
pass through the filter. These addresses are picked from among
those within a distributed set of nodes throughout the wide area
network, that form a secure overlay: any transmissions that wish
to traverse the overlay must first be validated at entry points of the
overlay. Once inside the overlay, the traffic is tunneled securely for
several hops along the overlay to the “approved” (and secret from
attackers) locations, which can then forward the validated traffic
through the filtering routers to the target. The two main principles
behind our design are: (i) elimination of communication “pinch”
points, which constitute attractive DoS targets, via a combination
of filtering and overlay routing to obscure the identities of the sites
whose traffic is permitted to pass through the filter, and (ii) the
ability to recover from random or induced failures within the for-
warding infrastructure or within the secure overlay nodes.

This paper proposes a preliminary approach to constructing this
forwarding service that we refer to as a Secure Overlay Service, or
SOS for short. We discuss how to design the overlay such that it
is secure with high probability, given attackers who have a large
but finite set of resources to perform the attacks. The attackers also
know the IP addresses of the nodes that participate in the overlay
and of the target that is to be protected, as well as the details of the
operation of protocols used to perform the forwarding. However,
we also assume that the attacker does not have unobstructed ac-
cess to the network core. That is, our model allows for the attacker
to take over an arbitrary (but finite) number of hosts, but only a
small number of routers. In particular, the attacker can bypass our
mechanism if they can take control of a router that lies in the path

between one of the “approved” overlay nodes and the target’s filter-
ing router: at that point, the attacker knows an IP address that will
be allowed to reach the target and can use that to launch the DoS
attack.

We feel that this assumption is justified since, if the attacker can
gain control of such a router, they can cut off the target’s commu-
nications directly, without the need to launch a DoS attack. Also,
it is more difficult (but not impossible) to take control of a router
than an end-host or server, due to the limited number of potentially
exploitable services offered by the former. While routers offer very
attractive targets to hackers, there have been very few confirmed
cases where take-over attacks have been successful.

Furthermore, we assume that the attacker cannot acquire suffi-
cient resources to severely disrupt large portions of the backbone
itself (i.e., such that all paths to the target are congested).

Our architecture leverages heavily off of previous work on IP
security[4], IP router filtering capabilities, and novel approaches to
routing in overlays[1] and peer-to-peer (P2P) networks[26, 6]. To
the extent possible, we strive to use existing systems and protocols,
rather than invent our own. Our resulting system is in some ways
similar to the Onion Routing architecture [20] used for anonymous
communications.

We perform a preliminary stochastic analysis using simple net-
working models to evaluate the likelihood that an attacker is able to
prevent communications to a particular target. We determine this
likelihood as a function of the aggregate bandwidth obtained by
an attacker through the exploitation of compromised systems. Our
analysis includes an examination of the capabilities of static attack-
ers who focus all their attack resources on a fixed set of nodes, as
well as attackers who adjust their attacks to “chase after” the re-
pairs that the SOS system implements when it detects an attack. We
show that even attackers that are able to launch massive attacks are
very unlikely to prevent successful communication. For instance,
attackers that are able to launch attacks upon 50% of the nodes in
the overlay have roughly one chance in one thousand of stopping
a given communication from a client who can communicate access
the overlay through a small subset of overlay nodes.

The remainder of the paper proceeds as follows. We review re-
lated work in Section 2. Section 3 describes the SOS Architecture,
whose resistance to attacks is evaluated in Section 4. Section 5 dis-
cusses implementation details, Section 6 provides a general discus-
sion of our results and future directions, and Section 7 concludes
the paper.

2. RELATED WORK
A fundamental design principle of the IP architecture is to keep

the functionality inside the core of the network simple, pushing as
much mechanism as possible to the network end-points. This prin-
ciple, commonly referred to as the “end-to-end principle”[22, 5],
has been the basic premise behind protocol design. However, as
has been demonstrated in the past few years [25, 10], such mecha-
nisms are inadequate in addressing the problem of DoS attacks.

It is trivial to abuse[23] or simply ignore congestion control mech-
anisms, and there are plenty of protocols that have no provision for
congestion control. Furthermore, no great technical sophistication
is required to launch one of these attacks. Even relatively large-
scale DoS attacks (Distributed DoS — DDoS)2 are not very dif-
ficult to launch, given the lack of security in certain email clients
and the ability to cause arbitrary code to be executed by an email
recipient.�

For the remainder of this paper we will use the term “DoS” to
mean both single-origin and distributed DoS attacks.

Unfortunately, as a result of its increased popularity and useful-
ness, the Internet contains both “interesting” targets and enough
malicious (or simply ignorant) users that DoS attacks are simply
not going to disappear on their own; indeed, although the press has
stopped reporting such incidents, recent studies have shown a sur-
prisingly high number of DoS attacks occurring around the clock
throughout the Internet [18]. Worse, the Internet is increasingly be-
ing used for time-critical applications (e.g., electricity production
monitoring and coordination between different generators).

The need to protect against or mitigate the effects of DoS attacks
has been recognized by both the commercial and research world.
Some work has been done toward achieving these goals, e.g., [12,
7, 24]. However, these mechanisms focus on detecting the source
of DoS attacks in progress and then countering them, typically by
“pushing” some filtering rules on routers as far away from the tar-
get of the attack (and close to the sources) as possible. Thus, they
fall into this class of approaches that are reactive. The motiva-
tion behind such approaches has been twofold: first, it is conceptu-
ally simple to introduce a protocol that will be used by a relatively
small subset of the nodes on the Internet (i.e., ISP routers), as op-
posed to requiring the introduction of new protocols that must be
deployed and used by end-systems. Second, these mechanisms are
fairly transparent to protocols, applications, and legitimate users.

Unfortunately, these reactive approaches by themselves are not
always adequate solutions:

� Methods that filter traffic by looking for known attack pat-
terns or statistical anomalies in traffic patterns can be de-
feated by changing the attack pattern and masking the anoma-
lies that are sought by the filter. Furthermore, statistical ap-
proaches will likely filter out valid traffic as well.

� Since the Internet spans multiple administrative domains and
(legal) jurisdictions, it is often very difficult, if not outright
impossible, to shut down an attack by contacting the admin-
istrator or the authorities closest to the source. In any case,
such action cannot be realistically delivered in a timely fash-
ion (often taking several hours).

� Even if this were possible, it is often the case that the source
of the attack is not the real culprit but simply a node that has
been remotely subverted by a cracker. The attacker can just
start using another compromised node.

� Using a “pushback”-like mechanism such as that described
in [12] to counter a DoS attack makes close cooperation among
different service providers necessary: since most attacks use
random source IP addresses (and since ingress filtering is not
widely used), the only reliable packet field that can be used
for filtering is the destination IP address (of the target). If
filters can only be pushed “halfway” through the network
between the target and the sources of the attack, the target
runs the risk of voluntarily cutting off or adversely impact-
ing (e.g., by rate-limiting) its communications with the rest of
the Internet. The accuracy of such filtering mechanisms im-
proves dramatically as the filters are “pushed” closer to the
actual source(s) of the attack. Thus, it will be necessary for
providers to allow other providers, or even end-network ad-
ministrators, to install filters on their routers. Apart from the
very realistic possibility of abuse, it is questionable whether
such collaboration can be achieved to the degree necessary.

The same concerns hold for the case of collaborative action
by the ISPs: even easy to implement mechanisms such as
ingress filtering, that could reduce or even eliminate spoofed-
address DoS attacks, are still not in wide use. We believe

it is rather unrealistic to expect that cooperative providers
would even establish static filters to allow legitimate (paying)
clients to tunnel through their infrastructure with any assur-
ance of quality of service, and much less so for the case of
mobile or remote clients (as may be the case for emergency
teams).

Another approach to mitigating DoS attacks against information
carriers is to massively replicate the content being secured around
the entire network. To prevent access to the replicated information,
an attacker must attack all replication points throughout the entire
network — a task that is considerably more difficult than attack-
ing a small number of, often co-located, servers. Replication is
a promising means to preserve information that is relatively static,
such as news articles. However, there are several reasons why repli-
cation is not always an ideal solution. For instance, the information
may require frequent updates complicating large-scale coherency
(especially during DoS attacks), or may be dynamic by its very na-
ture (e.g., a live audio or video stream). Another concern is the
security of the stored information: engineering a highly-replicated
solution without “leaks” of information is a challenging endeavor.

Thus, a different approach is needed in protecting the communi-
cations of parties involved in a critical task from the effects of DoS
attacks.

3. ARCHITECTURE DESCRIPTION
The goal of the SOS architecture is to allow communication be-

tween a confirmed user and a target. By confirmed, we mean that
the target has given prior permission to this user. Typically, this
means that the user’s packets must be authenticated and authorized
by the SOS infrastructure before traffic is allowed to flow between
the user through the overlay to the target. We shall discuss in Sec-
tion 5 how this can be efficiently achieved for a large collection of
SOS nodes and users. While we focus on the communication to a
single target, the architecture is easily extended to simultaneously
protect unicast communications destined to different targets. Both
peers can use the SOS infrastructure to protect bidirectional com-
munications; this is particularly important for “static” sites (e.g.,
two branches of the same company). For mobile clients, such as
ERT personnel, the reverse direction’s traffic (from the target site
to the client) can be sent directly over the Internet, or it can also use
the SOS infrastructure.

SOS is a network overlay, composed of nodes that communi-
cate with one another atop the underlying network substrate. Often,
nodes will perform routing functionality to deliver messages (pack-
ets) from one node in the overlay to another. We assume that the
set of nodes that participate in the SOS is known to the public and
hence is also known to any attacker. In effect, no node’s identity
is kept hidden. However, certain roles that an overlay node may
assume in the process of delivering traffic are kept secret from the
public. Keeping participation information of certain nodes hidden
from the public could be a means of providing additional security,
but is not required by the architecture.

Attackers in the network are interested in preventing traffic from
reaching the target. These attackers have the ability to launch DoS
attacks from a variety of points around the wide area network that
we call compromised locations. The number and bandwidth capa-
bilities of these compromised locations determine the intensity with
which the attacker can bombard a node with packets, to effectively
shut down that node’s ability to receive legitimate traffic. Without
an SOS, knowledge of the target’s IP address is all that is needed
in order for a moderately-provisioned attacker to saturate the tar-
get site. We assume attackers are smart enough to exploit features

of the architecture that are made publicly available, such as the set
of nodes that form the overlay. In this paper, we do not specifi-
cally consider how to protect the architecture against attackers who
can infiltrate the security mechanism that distinguishes legitimate
traffic from (illegitimate) attack traffic: we assume that commu-
nications between overlay nodes remain secure so that an attacker
cannot send illegitimate communications, masking them as legiti-
mate. In addition, it is conceivable that more intelligent attackers
could monitor communications between nodes in the overlay and,
based on observed traffic statistics, determine additional informa-
tion about the current configuration. Protecting SOS from such
highly specialized and sophisticated attackers is beyond the scope
of this paper.

Beacon

Servlet
Secret

overlay
nodes

SOAP

Filtered region

Beacon

Servlet
Secret

Beacon

Servlet
Secret

SOAP

Source
Point

Target

Figure 1: Basic SOS architecture.

Figure 1 gives a high-level overview of the SOS architecture
that protects a target node or site so that it only receives legitimate
transmissions. In the discussion that follows, we first give a brief
overview of the design process, and then develop the architecture
piece by piece. The reader can refer back to the figure during the
discussion.

3.1 Design Rationale
Fundamentally, the goal of the SOS infrastructure is to distin-

guish between authorized and unauthorized traffic. The former is
allowed to reach the destination, while the latter (or, more gener-
ally, unverified traffic) is dropped or is rate-limited. Thus, at a very
basic level, we need the functionality of a firewall “deep” enough
in the network that the access link to the target is not congested.
This imaginary firewall would perform access control by using tra-
ditional protocols such as IPsec.

However, traditional firewalls themselves are susceptible to DoS
attacks. One way to address this problem is to replicate the firewall
functionality, in a manner similar to that described in [13]. To avoid
the effects of a DoS attack against the firewall connectivity, we
need to distribute these instances of the firewall across the network.
In effect, we are “farming out” the expensive processing (such as
cryptographic protocol handling) to a large number of nodes. How-
ever, firewalls depend on topological restrictions (“pinch points”) in
the network to enforce access control policy. Since our distributed
firewall has performed the access control step, it would seem obvi-
ous that all we need around the target is a router that is configured
to only let through traffic forwarded to it by one of the firewalls.

However, a security system cannot depend upon the identity of

these firewalls to remain secret. Thus, an attacker can launch a
DoS attack with spoofed traffic purporting to originate from one
of these firewalls. Notice, however, that given a sufficiently large
group of such firewalls, we can select a very small number of these
as the designated authorized forwarding stations : only traffic for-
warded from these will be allowed through the filtering router, and
we change this set periodically.

3.2 Protecting the Target: Filtering
In the current Internet, knowledge of the network identifier (IP

address) of the target allows an attacker to bombard the target loca-
tion with packets that originate from compromised locations through-
out the Internet. To prevent these attacks, a filter can be constructed
that drops illegitimate packets at some point in the network, such
that the illegitimate traffic does not overwhelm routing and pro-
cessing resources at or near the target. We assume that the filter
can be constructed so that attackers do not have access to routers
inside the filtered region (i.e., they cannot observe which source ad-
dresses can proceed through the filter). Past history indicates that
it is significantly more difficult for an attacker to completely take
over a router or link in the middle of an ISP’s network than to at-
tack an end-host; intuitively, this is what we would expect, given
the limited set of services offered by a router (compared to, e.g., a
web server or a desktop computer).

We assume that filtering is done at a set of high-powered routers
such that i) these routers can handle high loads of traffic, making
them difficult to attack, and ii) possibly there are several, disjoint
paths leading to the target, each of which is filtered independently.
This way, if one of these paths is brought down, filtered traffic can
still traverse the others and ultimately reach the target. Essentially,
we assume that the filter can be constructed locally around the tar-
get to prevent a bombardment of illegitimate traffic, while at the
same time allowing legitimate, filtered traffic to successfully reach
the target. Typically, such filters need to be established at the ISP’s
Point of Presence (POP) routers that attach to the ISP backbone.

3.3 Reaching a well-filtered Target
Under the filtering mechanism described previously, legitimate

users can reach the target by setting the filter around the target to
permit only those IP addresses that contain legitimate users. This
straightforward approach has two major shortcomings. First, when-
ever a legitimate user moves, changes IP addresses, or ceases to be
legitimate, the filter surrounding the target must be notified and
modified. Second, the filter does not protect the target from traffic
sent by an illegitimate user that resides at the same address as a le-
gitimate user, or (more importantly) from an illegitimate user that
has knowledge about the location of a legitimate user and spoofs
the source address of its own transmissions to be that of the known
legitimate user.

A first step in our solution is have the target select a subset of
nodes,

���
, that participate in the SOS overlay to act as forwarding

proxies. The filter is set to only allow packets whose source address
matches the address of some overlay node ��� ��� . Since � is a
willing overlay participant, it is allowed to perform more complex
verification procedures than simple address filtering. Thus, it can
use more sophisticated (and heavy-weight) security techniques to
verify whether or not a packet sent to it originated from a legitimate
user of a particular target.

The filtering function that is applied to a packet or flow can have
various levels of complexity. It is, however, sufficient to filter on the
source address: the router only needs to let through packets from
one of the (few) secret servlets. All other traffic can be dropped,
or rate-limited. Because of the small number of such filter rules

(3-4 per interface) and their simple nature (filter only on source IP
address), router performance will not be impaired[12], even if we
do utilized specialized hardware (e.g., CAMs).

This architecture prevents attackers with knowledge of legiti-
mate users’ IP addresses from attacking the target. However, an
attacker with knowledge of the IP address of the proxy can still
launch two forms of attacks: an attacker can breach the filter and
attack the target by spoofing the source address of the proxy, or
attack the proxy itself. This would prevent legitimate traffic from
even reaching the proxy, cutting off communication through the
overlay to the target.

Our solution to this form of attack is to hide the identities of
the proxies. If attackers do not know the identity of a proxy, they
cannot mount either form of attack mentioned above unless they
successfully guess a proxy’s identity. We refer to these “hidden”
proxies as secret servlets.

3.4 Reaching a Secret Servlet
To activate a secret servlet, the target sends a message to the

overlay node that it chooses to be a secret servlet, informing it of its
task. Hence, if a packet reaches a secret servlet and is subsequently
verified as coming from a legitimate user, the secret servlet can then
forward the packet through the filter to the target. The challenge at
this point is constructing a routing mechanism that will route to a
destination (a secret servlet) while utilizing a minimal amount of
information about the identity of that destination.

Here we take advantage of the dynamic nature and the high level
of connectivity that exists when routing atop a network overlay.
The connectivity graph of a network overlay consists of nodes which
are the devices (e.g., end-systems) that participate in the overlay,
and edges which represent IP paths that connect pairs of nodes in
the overlay. Unlike the underlying network substrate whose phys-
ical requirements limit the pairs of nodes that can directly connect
to one another, network overlays have no such limits, such that
an overlay edge is permissible between any pair of overlay nodes.
This added flexibility and increased number of possible routes can
be used to complicate the job of an attacker by making it more
difficult to determine the path taken within the overlay to a secret
servlet. In addition, since a path exists between every pair of nodes,
it is easy to recover from a breach in communication that is the re-
sult of an attack that shuts down a subset of overlay nodes. The
recovery involves simply removing those “shut down” nodes from
the overlay and routing around them.

There exists a straightforward but costly solution to reaching a
secret servlet without revealing the servlet’s ID to the nodes that
wish to reach it. This is to have each overlay node that receives
a packet randomly choose the next hop on the overlay to which
it forwards a packet. Eventually, the packet will arrive at a secret
servlet, which can then deliver the packet to the target.

3.5 Connecting to the Overlay
Legitimate users need not reside at nodes that participate in SOS.

Hence, SOS must support a mechanism that allows legitimate traf-
fic to access the overlay. For this purpose, we define a secure over-
lay access point (SOAP). A SOAP is a node that will receive packets
that have not yet been verified as legitimate, and perform this verifi-
cation. For this purpose, off-the-shelf authentication protocols such
as IPsec or TLS can be used. Allowing a large number of overlay
nodes to act as SOAPs increases the bandwidth resources that an
attacker must obtain to prevent legitimate traffic from accessing the
overlay. Effectively, SOS becomes a large distributed firewall [13]
that discriminates between “good” (authorized) traffic from “bad”
(unauthorized) traffic. By using a large number of topologically-

distributed firewall instances, we increase the amount of resources
(bandwidth) an attacker has to spend to effectively deny connectiv-
ity to legitimate clients.

Having a large number of SOAPs increases the robustness of
the architecture to attacks, but complicates the job of distributing
the security information that is used to determine the legitimacy of
a transmission toward the target. One can imagine several ways
in which SOAPs can be chosen. For instance, different users (IP
address origins) can be mapped to different subsets of SOAPs. An
investigation into how SOAPs are chosen is part of our future work
plans.

3.6 Routing through the Overlay
Having each overlay participant select the next node at random is

sufficient to eventually reach a secret servlet. However, it is rather
inefficient, with the expected number of intermediate overlay nodes
contacted being ��� ��� � ���

where
�

is the number of nodes in the
overlay and

� �
is the number of secret servlets for a particular

target. Here, we discuss a possible alternative routing strategy in
which, with only one additional node knowing the identity of the
secret servlet, the route from a SOAP to the secret servlet has an
expected path length that is �����	��
 � �

.
The routing algorithm utilizes the Chord service [26]. For the

purposes of this paper, Chord can be viewed as a routing service
that can be implemented atop the existing IP network structure (i.e.,
in a network overlay). Consistent hashing [14] is used to map, by
using a hash function, an arbitrary identifier to a unique destination
node that is an active member of the overlay. Each overlay node
maintains a list that contains �����	��
 � �

identities of other active
nodes in the overlay.

Given the destination identifier, each node knows how to choose
a member in its list such that, from an arbitrarily chosen starting
node, the destination node to which the identifier hashes is reached
in �����	��
 � �

overlay hops. Multiple destination nodes for a given
identifier can be created by using different hash functions. In addi-
tion, by choosing the right class of hash functions, the sequences of
nodes used to carry a packet from a node to the destination are in-
dependent from one another (uncorrelated). It is simple to produce
multiple mappings (hash functions) that produce different paths to
different sets of destination nodes (i.e., the sets of nodes that form
paths from a given start node to a given sink node are independent).

The Chord service is robust to changes in overlay membership:
each node’s list is adjusted to account for nodes leaving and joining
the overlay such that the above stated properties continue to hold.

In SOS, the identifier used to which the hash function is applied
is the IP address of the target. Thus, Chord can be used to direct a
packet from any node in the overlay to the node that the identifier is
mapped to, by applying the hash function to the target’s IP address.
This node to which Chord delivers the packet is not the target, nor
is it necessarily the secret servlet. It is simply a unique node that
will be eventually be reached (after possibly several overlay hops)
using Chord, regardless of the starting point in the overlay. We
refer to this node as the beacon, since it is to this node that packets
destined for the target are first guided. When a packet is approved
by a SOAP for forwarding over the overlay, the hash on the IP
address of the target is used as the key. Chord therefore provides a
robust and reliable while relatively unpredictable means of routing
packets from an access point to one of several beacons.

One last step needed is to provide the mechanism that commu-
nicates the secret servlet’s identity to the beacon node. This can
also be achieved via Chord: as an overlay node, the secret servlet
or the target can reach the beacon by hashing on the target identifier
(which the secret servlet knows), and then using Chord routing in

the same way that SOAPs do. Hence, the secret servlet or the target
can inform the beacon of the secret servlet’s identity.

By providing only the beacon with the identity of the secret
servlet, the packet can be delivered from any SOAP to the target
by traveling across the overlay to the beacon, then from the beacon
to the secret servlet, and finally from the secret servlet (through the
filter) to the target. This allows the overlay to scale for arbitrarily
large numbers of overlay nodes and target sites. If the overlay only
serves a relatively small number of target sites, traditional routing
protocols or RON-like routing[1] may be sufficient.

3.7 Redundancy
Having a single SOAP, beacon, or secret servlet weakens the

SOS architecture, in that a successful attack on any one of these
nodes can prevent legitimate traffic from reaching the target. For-
tunately, each component is easily replicated within the architec-
ture. Furthermore, an attack upon any of these components, once
realized, is easily repaired.

Specifically, as discussed above, SOAP functionality is easily
replicated. Any overlay node can act as a SOAP as long as it has
the ability to check the legitimacy of a packet transmissions. If a
SOAP is attacked, it can exit the overlay, and the legitimate user
attempting access need only find another SOAP that will accept its
transmissions.

Furthermore, the target can choose multiple nodes as secret servlets
and set the filter to allow packets from only these nodes to pass
through the filter. If a secret servlet is attacked, or its identity
breached such that attack traffic with a secret servlet’s source ID
can proceed through the filter, the target can remove the servlet
whose identity is compromised from its set of servlets and mod-
ify its filter appropriately. A secret servlet under attack can also
remove itself from the overlay until the attack terminates.

Finally, multiple nodes can act as beacons for a target via apply-
ing several hash functions (or several iterations of the same hash
function) over the target identifier. In addition, if a beacon node
is attacked, the node can remove itself from the overlay, and the
Chord routing mechanism will heal itself such that a new node will
act as a beacon for that hash function. If the former beacon cannot
communicate the secret servlet information to the new beacon, then
the new beacon must wait for the secret servlet to contact it again
(as part of a keep-alive protocol) with its identity.

We note that when there are multiple beacons and secret servlets,
every beacon should know the identity of at least one secret servlet
so that the packets that each beacon receives can be forwarded on-
ward to a secret servlet. Thus, each hash function is used by at least
one secret servlet.

A last word on redundancy: since the secret servlets use tunnel-
ing to reach the target, it is possible to use the backup links of a
multihomed site to carry SOS-routed traffic (effectively using tun-
neling as a source-routing mechanism). Thus, all attack traffic will
use the BGP-advertised “best” route to the target, while traffic from
the SOS infrastructure will use the unused available capacity of the
target site.

3.8 Summary of Architecture
To summarize, the sequence of operations in the SOS architec-

ture consists of the following steps:

1. A site (target) installs a filter in its immediate vicinity and
then selects a number of SOS nodes to act as secret servlets;
that is, nodes that are allowed to forward traffic through the
filter to that site. Routers at the perimeter of the site are in-
structed to only allow traffic from these servlets to reach the
internal of the site’s network. These routers are powerful

enough to do filtering (using only a small number of rules)
on incoming traffic without adversely impacting their perfor-
mance.

2. When an SOS node is informed that it will act as a secret
servlet for a site (and after verifying the authenticity of the
request), it will compute the key � for each of a number
of well-known consistent hash functions, based on the tar-
get site’s network address. Each of these keys will identify
a number of overlay nodes that will act as beacons for that
target site.

3. Having identified the beacons, the servlets or the target will
contact them, notifying the beacons of the servlets’ exis-
tence. Beacons, after verifying the validity of the request,
will store the necessary information to forward traffic for that
target to the appropriate servlet.

4. A source that wants to communicate with the target contacts
an overlay access point (SOAP). After authenticating and au-
thorizing the request, the SOAP securely routes all traffic
from the source to the target via one of the beacons. The
SOAP (and all subsequent hops on the overlay) can route the
packet to an appropriate beacon in a distributed fashion us-
ing Chord, by applying the appropriate hash function(s) to
the target’s address to identify the next hop on the overlay.

5. The beacon routes the packet to a secret servlet that then
routes the packet (through the filtering router) to the target.

This scheme is robust against DoS attacks because:

� If an access point is attacked, the confirmed source point can
simply choose an alternate access point to enter the overlay.

� If a node within the overlay is attacked, the node simply exits
the overlay and the Chord service self-heals, providing new
paths over the re-formed overlay to (potentially new sets of)
beacons. Furthermore, no node is more important or sen-
sitive than others — even beacons can be attacked and are
allowed to fail.

� If a secret servlet’s identity is discovered and the servlet is
targeted as an attack point, or attacks arrive at the target with
the source IP address of some secret servlet, the target can
choose an alternate set of secret servlets.

4. PERFORMANCE ANALYSIS OF SOS
In this section we develop simple analytical models that describe

DoS attacks, and evaluate the SOS architecture using these models
to evaluate its resilience to DoS attacks. Our evaluation makes the
following assumptions:

� An attacker knows the set of nodes that form the overlay,
and can attack these nodes by bombarding them with traffic.
There is a fixed amount of bandwidth the attacker can use to
mount its attack upon the overlay and the target.

� An attacker does not know which nodes are secret servlets or
beacons, and does not infer these identities (e.g., by monitor-
ing traffic through the overlay).

� Attackers have not breached the security protocols of the
overlay, i.e., their packets can always be identified by SOS
nodes as being illegitimate.

� Each legitimate user can access the overlay through a lim-
ited number of SOAPs, but different users access the overlay
through different SOAPs. Thus, an attacker that wants to
prevent all communication to the target will not target the
SOAPs of a specific user, since doing so only ensures that
only that user cannot communicate with the target.

Our evaluation will determine the likelihood that an arbitrarily cho-
sen user’s communication to the target is prevented by the attack.
This likelihood is clearly lower than the likelihood that all commu-
nication to the target is successfully prevented, but higher than the
likelihood that there exists a user that cannot access the target.

4.1 A Static Attack
Our analysis begins by considering the following problem: sup-

pose some subset of nodes in the overlay are assigned specific tasks
for a given target, � . Let

��� � ��� ��� �
�

��� � , ����� , � � ��� � � be the set
of secret servlets with � �
	�� �
��� ��� � � � , ��� � ��� � , ����� , ��� ��� � � be
the set of SOAPs that can be used by a given source point � with��� 	�� ��� � ��� � � � , and

��� � ��� � , ����� , ��� ��� � � be the set of beacons
used to receive transmissions headed toward � : � � 	�� ����� ��� � � �
is a function of the number of hash functions issued by � .

For our initial analysis, we assume that � can communicate suc-
cessfully with � as long as there exists an available access point, an
available beacon, and an available secret servlet that can be used to
complete the communication path. This assumes that all beacons
are aware of all secret servlets. The analysis is easily extended to
the case where this assumption does not hold. We also assume that
the selection of nodes to perform various duties is done indepen-
dently, such that a node can simultaneously act as any combina-
tion of access point, beacon, and secret servlet. We assume that all
nodes implement the Chord routing service (and hence can be part
of the communication path). Note that Chord will be able to route
effectively even if only one node remains in the overlay, though the
node will have to simultaneously be the access point, beacon, and
secret servlet.

Let �! �#" �%$
�%& � be the probability that a set of
$

nodes selected
at random from "(' $ nodes contains a specific subset of

&
nodes.

It is easy to show that � �#" �)$
�)&��*	,+ �-/. � + � -0. when
$213&

,3 and�� �#" �/$
�%& �4	65 when
&�17$

.
Let � � be the number of nodes that the attacker attacks. Let��8�9 : be a random variable that equals 1 if � can reach � during an

ongoing attack and 0 otherwise.

;!<�= � :>9 8 	@?�A�	 � ?CB �! � � � � � � � ��� � �
� ?DB �! � � � � � � � � � � � � ?CB �� � � � � � � ��� � �

Figure 2 plots the likelihood of an attack succeeding at shutting
down access to a site in the static case. In Figure 2(a) we hold � � ,� � , and ��� fixed at 10 and vary � � along the E -axis. These numbers
are quite conservative: we restrict the source’s entry to only 10 pos-
sible access points and allow at most 10 beacons and secret servlets
to service its needs. An increase in any of these numbers decreases
the probability of a successful attack. The F -axis plots the proba-
bility of a successful attack, with the different curves representing
different values of

�
, the total number of nodes in the overlay sys-

tem. In Figure 2(b), we hold
�

fixed at
?�5�G

and � � fixed at
?�5
H

.
We vary � � along the E -axis, and again plot the probability of a
successful attack on the F -axis. The different curves represent the
probabilities for different values of � � , where I 	 � � � � � .H

This follows from an algebraic reduction of �J �#" �)$
�K& �L	+ �NM -� M - . � + � � . .

1e-08

1e-06

0.0001

0.01

1

100

1 10 100 1000 10000 100000 1e+06 1e+07

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

nodes attacked

N=100
N=1000

N=100000
N=1000000

(a) Varying number of attackers and nodes in the over-
lay

1e-08

1e-06

0.0001

0.01

1

100

1 10 100 1000

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

nodes that are beacons

f=0.01
f=0.1

f=1
f=10

f=100

(b) Varying number of beacons and secret servlets

Figure 2: Attack success probability for the Static case.

From these figures, we see that the likelihood of an attack suc-
cessfully terminating communication between � and � is negligi-
ble unless the attacker can simultaneously bring down a significant
fraction of nodes in the network. For instance, Figure 2(a) demon-
strates that when only ten nodes act as beacons, ten nodes act as se-
cret servlets, and ten nodes act as access points, for an attack to be
successful in one out of ten thousand attempts, approximately forty
percent of the nodes in the overlay must be attacked simultaneously.
Similarly, Figure 2(b) shows that the likelihood of a successful at-
tack is significant only when either the number of secret servlets or
the number of beacons is small, but the numbers needed to force
attacks to be successful beneath minuscule probabilities are quite
small. In summary, long-term static attacks upon a moderately-
provisioned SOS are unlikely. (Notice that the number of overlay
nodes is not limited by the number of POPs; such nodes can be
located anywhere throughout the network, even at customer’s facil-
ities. If co-located with routers, more than one such node can be
attached to each router.)

4.2 Dynamic Attacks and Recovery
Our previous model assumed that an attacker would select a set

of nodes to attack, and that SOS takes no action toward repairing

the attack (e.g., by changing the node that acts as the secret servlet,
or by having nodes from from their participation in the overlay).
Here, we extend this model to the case where SOS does take such
action and the attacker reacts to a repaired network by altering its
attack.

As in the static case, we assume that the attacker has enough
bandwidth resources to bring down � � nodes. When SOS identi-
fies an attacked node, that node is removed from the overlay such
that its being attacked does not prevent communication between
the source and target. When an attacker identifies that a node it
is attacking no longer resides in the overlay, it redirects its attack
toward a node that does still reside in the overlay. We assume that
there is a repair delay, ��� , that equals the difference in time from
when a node is first attacked until the time when SOS detects the
attack and removes the node from the overlay. Also, there is an
attack delay, � � , that equals the difference in time between when
an attacked node is removed from the overlay to the time when the
attacker (realizing the node it is attacking has been removed) redi-
rects the attack toward a new node in the overlay.

Our analysis assumes that when an attack on a node is termi-
nated, that node is immediately brought back into the overlay. This
is a reasonable assumption since a node can detect when it is no
longer being bombarded with traffic. Under this model, the attacker
prevents communication during the period of time it takes SOS to
identify the attacked node, remove it from the overlay, and repair
the overlay to complete communication to the target (e.g., change
the node that acts as the secret servlet, allow Chord to reconfigure
in response to deletions in the overlay, etc.).

We define a random variable
� ��� � to be the number of nodes that

are under attack that have not yet been removed from the overlay at
time � . Since the attacker can attack up to � � nodes, we have that5�� � ��� ��� � � . Letting � � 	 ;!<�= � ��� ��	
	#A

, we can extend our
static case analysis to this dynamic case. Let � 8�9 : ��� � be a random
variable that equals 1 if � can reach � during an ongoing attack
at time � and 0 otherwise. When

	
of the � � nodes are active in

the overlay, then the total number of nodes that are active in the
overlay is

��� 	�B � � . Assuming the attack and recovery system
has reached a steady state, we have:

���� � 8J9 :��������������
�! " ��#%$'& � ���)(+*� '��,.-0/1(32 �54 / 4 � � ���76
���8(9* ��,:-;/1(92 � 4 / 4 � � �<�76
���8(9* ��,:-;/1(92 � 4 / 4 � � ����=

where � �#" �/$
�%& � is set to equal � �#" �%$�� " � when
&�1 " .

We are interested in two variants of how we model the SOS re-
pair process. In the first, the ability to react to each attacked node
is performed sequentially. This would occur when the decision to
modify the overlay is made by a single centralized authority. We
refer to this variant as the centralized repair process. Alternatively,
there can be a distributed repair process, where repairs can be per-
formed in parallel. This would occur when each node can inde-
pendently perform its repair process. Similarly, the attack process
can be centralized, where only one attack node can be modified at
a time, or distributed, where separate attackers are responsible for
the detection and movement of their individual attacks.

Because SOS is a novel architecture, we do not yet have a de-
tailed understanding of how the repair and attack processes will
function. Thus, we do not have models that accurately capture the
distributions of � � (attack delay) and ��� (repair delay). Nonethe-
less, we are interested in gaining preliminary insight into how the
relative rate of change in the number of successfully attacked nodes
active in the overlay affects the robustness of SOS. We achieve this

Attack Repair process
process centr. distr.

centr. >@?A>@? � ?CB >@?A>@?CB�?CB
distr. >@?D>@? � ?C?CB >@?D>E?C?C?CB

Table 1: Queueing models for the variants of attack and repair
processes.

insight by applying fundamental queueing models to capture the
attack and repair behaviors. In these models, the number of jobs
active in the queueing system equals the number of nodes actively
under attack that remain in the overlay. The repair process removes
jobs from the system and the attack process places jobs in the sys-
tem. We assume both � � and ��� are exponentially distributed
random variables with respective rates F and G .

Table 1 presents the queueing models used to capture the four
possible scenarios, given that both the attack and repair processes
can be either centralized and distributed. Each of the four models
is a birth-death process with H 	 � � � ? states, where the process
resides in state

	
when there are

	
nodes that are active in the overlay

that are being attacked,
5I�J)� � � . When the attack is centralized,

the rate of transition from state
	

to state
	 � ?

is F . In the distributed
case, the rate is � � � B@	 � F . When the repair is centralized, the rate
of transition from state

	
to state

	 B ?
is G . In the distributed case,

the rate is
	 G .

In each model, � � is expressed as a function of K 	 F � G . See
[17] for the exact formulas.

In Figure 3, we plot
;!<�= � 8�9 : ��� ��	 ?�A

, varying K 	 F � G along
the E -axis. In each figure, the SOS overlay contains

?�5 H
nodes,

where 10 nodes are selected as secret servlets, 10 nodes selected as
beacons, and each user can access the overlay through 10 SOAPs.
Each curve plots

; <�= � 8�9 : ��� ��	�?�A
using a different value for � � .

We see that as K grows large,
;!<�= � 8�9 : ��� � 	 ?�A

grows asymptot-
ically to the corresponding value of the static case,

;!<�= � 8J9 : 	?�A
. As K increases, attacks recover more quickly and repair takes

longer, such that the expected number of attacked nodes inside the
overlay approaches � � . When K is small,

; <�= �!8�9 : ��� �4	 ?�A
dimin-

ishes since the number of nodes successfully attacked inside the
system is reduced.

Not surprisingly, for a fixed K , attacks are most likely to deny
service to the target when the attack process is distributed and the
repair process centralized, and are least likely to deny service when
the attack process is centralized and the repair process is distributed.
One interesting result is that the sensitivity of

; <�= � 8J9 : ��� � 	 ?�A
to

K is much higher when both attack and repair processes are cen-
tralized than when both processes are distributed. When both pro-
cesses are centralized, the fraction of time in which an attack is
successful is negligible when K:L ?

(the repair process is faster
than the attack process). However, as K is increased past 1, the
fraction increases quickly toward the asymptotic limit. When both
processes are distributed, the fraction of time for which the attack
is successful can be significant when a large fraction of nodes in
the overlay is attacked, even when K�L ?

. This can be understood
intuitively by comparing the respective birth-death processes of the
system when repair and attack processes are both centralized and
where they are both distributed. In the system where both processes
are centralized, each upward transition’s rate equals F and each
downward transition’s rate equals G . In the system where both pro-
cesses are distributed, the upward transitions’ rates of � � � B�	 � F are
larger for states with smaller

	
, whereas the downward transitions’

rates of
	 G are smaller with smaller

	
. As a result, when KJL ?

,
the centralized-process system is less likely to drift away from the
smaller states.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(a) Centralized Attack, Centralized Recovery

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(b) Centralized Attack, Distributed Recovery

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(c) Distributed Attack, Centralized Recovery

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P
(A

tta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(d) Distributed Attack, Distributed Recovery

Figure 3: Attack success probability for the Dynamic case.

4.3 Attacking the Underlying Network
To this point, we have assumed that to deny service to a target

protected by SOS, an attacker will deny service to nodes in the
overlay. Another alternative, however, is to launch an attack at the
core of the network. Rather than attacking the edge nodes that make
up the overlay, attackers can focus on those core nodes that lie on
paths between multiple overlays.

We measure attack severity in a scenario in which several com-
promised zombie nodes, widely distributed over the network, launch
attacks on a target node. The attacks can be coordinated, timer-
driven or triggered by events like opening of mailboxes, booting up
of zombie machines, etc. For instance, the triggering mechanism of
the attack can either be (i) attack immediately, or (ii) execute code
at some specified time. For (i), the timing of the attack depends on
the infection vector: for an email-based worm it is reasonable to
assume that attacks will go off at random times from zombie ma-
chines. For (ii), we can assume the coordinated attacks to be a sin-
gle “large” attack. We next show that attacks that are a combination
of the two will overpower routers with low bandwidth capabilities
much easier than those with high bandwidth capabilities.

As a simple first approximation, we can view the arrival of the at-
tacks from such clients (with coordinated attacks acting as a single,
“large” attack client) as a Poisson process, with an arrival rate F �

attacks per unit time4. Each attacking client is assumed to use up
$ �

units of resources (typically bandwidth) from a target while the at-
tack is in progress. We also assume that the duration of attacks from
such clients is exponentially distributed, with mean

? � G � (the at-
tacks can terminate for a number of reasons, for instance discovery
and shutdown of compromised clients by users/local system admin-
istrators or discovery by some trace-back mechanism and shutdown
by access network filtering). We also assume that legitimate traffic
arrives at the node with rate F�� , requiring

$ � units of resource and
a mean holding time

? � G�� . Let us assume that the target node has���
units of resource available. When all the resources get tied up,

arriving requests, legitimate or not, are denied service. We then say
that a DoS attack is successful.

The system model is now abstracted into a Stochastic Knapsack
[21] framework. In a Stochastic Knapsack,

� �
is the total amount

of resources available at the server, and each arriving connection is
mapped into an arriving call of class � with resource requirement$��

and mean holding time
? � G � . Calls in each class arrive at a rate

F � . The knapsack always admits an arriving object when there
is sufficient room. In our model, the probability of a successful
DoS attack is the blocking probability corresponding to the class ofG
Note that we are modeling the attack arrival as a Poisson process.

The attack traffic itself is assumed to be (high bandwidth) CBR.

legitimate traffic.
Let � � denote the number of class- � objects in the knapsack.

Then the total amount of resource utilized by the objects in the
knapsack is �(��� , where ��� 	 � $ � �%$

� ���������%$�� �
and ��� 	 � � � � �

� ��	����� � � �
. We define the process in terms of the state space of the

different class- � objects using the � B dimensional integer vector� , i.e., let

 � 	 � � ��� � �
� ��� � ��� �
Formally, the knapsack admits an arriving class- � object if

$ � �
��� B � ��� . Let

 �
be the subset of such states, i.e.,

 � � 	 � � �
 ��� ��� � � � B $ � �
The blocking probability

� �
for a class- � call under Poisson ar-

rival assumption is then given by [21]

� � 	@?DB������
�����
�� # � K ���� � � ���

��� �����
�� # � K � �� � � � � (1)

where K � 	 F � � G � .

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load of attack traffic

B
lo

ck
in

g
pr

ob
ab

ili
ty

 fo
r

le
gi

tim
at

e
tr

af
fic

DDoS performance in a test case

Figure 4: Blocking probability for legitimate traffic as a func-
tion of attack traffic load.

As an illustrative example, we consider a simple case where we
have only two classes of customers, one corresponding to the DoS
attacks and the other to legitimate traffic.5 We assume that an in-
dividual call in each class uses up the same amount of bandwidth
(motivated by the idea that the compromised clients come from the
same population as the legitimate users). For a DoS attack to be
successful, the load level (K �) for the class of attack traffic has to
be significantly higher than that of legitimate traffic. We construct
a test scenario where the target node has 20 units of resource avail-
able, both the attack and legitimate traffic utilize one unit of re-
source and K 	 F � G for the legitimate traffic is 1. In Figure 4, we
plot the probability that a legitimate connection is denied service as
a function of K of of attack traffic.

As we can observe, under our test scenario, where K 	"!
5
5
for

the attack traffic will cause 90% of the legitimate traffic to be de-
nied service. Under a massive attack, if the attack load rises to

?�5 G
,#

In a more accurate or generalized model, we can classify the var-
ious clients according to their bandwidth capabilities, more specif-
ically their network access types like DSL, Cable, T1, Dialup, etc.
This would not change the nature of the results we present.

99.8% of legitimate traffic is denied service. Now we consider the
effects of two key features of the SOS architecture. First, when we
push the attack point perimeter into the interior of the core, then
the traffic handling capability of the attacked node increases (core
routers can handle 10Gbps line speeds per interface, compared to
155Mbps capabilities of a typical high speed edge router). We con-
sider the case where the attack traffic load in our test scenario is
200, and we re-compute the blocking probability for legitimate
traffic as we increase the capacity of the node by a factor $, i.e.,� �&%�')($�* � �,+.-0/

. We denote the ratio of the old blocking prob-
ability with the new blocking probability as the Bandwidth Gain
(BG) of the system. In Figure 5(a), we plot the BG of the system
as a function of $. As can be observed, a bandwidth increase by a
factor of 12 brings about a reduction in the blocking probability by
three orders of magnitude.

10
0

10
1

10
0

10
1

10
2

10
3

10
4

Bandwidth increase factor

B
an

dw
id

th
 G

ai
n

(a) Increasing the capacity of the attacked node.

10
0

10
1

10
2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Size of the overlay

R
an

do
m

iz
at

io
n

G
ai

n

(b) Increasing the anonymity of the attacked node.

Figure 5: Performance gains with SOS.

Next, we study the effects of anonymizing the attacked node.
If the attacker does not know the identity of the secret servlet for
a particular target, the attacks will be launched randomly onto the
overlay. Only a fraction of those attacks will reach the target servlet.
Thus, the effective arrival rate of the attacks becomes F � * I , whereI is the fraction of the secret servlets in the SOS for a particular

node. We again compute the ratio of the old probability with the
new blocking probability and denote it as the Randomization Gain
(RG) of the system. In Figure 5(b) we plot the RG of the system as
a function of the number of nodes in the overlay (as the number of
nodes in the overlay increases from left to right, a correspondingly
smaller fraction of the traffic reaches the target node). Placing the
target node randomly in a group of 30 brings down the probability
of attack by 4 orders of magnitude.

5. IMPLEMENTATION OF SOS
One particularly attractive feature of the SOS architecture is that

it can be implemented using existing software and standardized
protocols, making its adoption and eventual use easier.

Filtering: all high and medium-range (both in terms of perfor-
mance and price) routers, as well as most desktop and server oper-
ating systems, offer some high-speed packet classification scheme
that can be used to implement the target perimeter filtering. A
simplified version of [12] can be used by the target to inform its
perimeter routers of changes in the set of allowed secret servlets.

Authentication and authorization of sources: practically all
commercial and free operating systems include an implementation
of IPsec[15]. IPsec is a set of protocols that can be used to es-
tablish cryptographic keys and other relevant parameters between a
pair of hosts, and then protect (encrypt and authenticate) the traffic
between them. As described in [4], the conditions under which ac-
cess to the overlay is allowed can be efficiently encoded in KeyNote
credentials[3], which resemble public-key certificates with autho-
rization information embedded. Thus, it is possible to provision
and manage access control for a large SOS infrastructure with min-
imal overhead in terms of performance, storage, and synchroniza-
tion requirements, using the techniques presented in [16].

More specifically, each authorized source is given a certificate
by a target authorizing that source to use the SOS infrastructure
to send traffic to the target. In the process of authenticating to an
access point (via the IPsec key-exchange protocol, named IKE [9]),
the source provides this certificate to the access point. The access
point can both authenticate the source (by verifying a cryptographic
signature) and confirm that the source is allowed to send traffic to
the target (by examining the authorization information embedded in
the credentials). Notice that access points need not store any access
control policies. The certificates are used to “remind” access points
of the relevant access control policies; once a communication is
torn down, the access point can “forget” the relevant policy and
certificates.

Tunneling: once traffic has entered the overlay network, it needs
to be forwarded to other SOS nodes toward the beacon, and from
there to the secret servlets. Standard traffic tunneling techniques[11,
1] and protocols can be used to this end: IP-in-IP encapsulation[19],
GRE encapsulation[8], or IPsec in “tunnel mode”. Furthermore,
traffic inside the overlay network can take advantage of traffic pri-
oritization schemes such as MPLS or DiffServ[2], if they are made
available by the infrastructure providers. The routing decisions in-
side the overlay network are based on a Chord-like mechanism[26].

We envision the overlay nodes to be a mix of routers and high-
speed end systems. In particular, since IP tunneling is a lightweight
operation, it is conceivable that SOS functionality can be offered by
service providers without adversely affecting the performance of
their networks. The access points to the overlay network can be a
mix of routers and high-speed end systems (with appropriate cryp-
tographic acceleration hardware to boost performance). The access
points and secret servlets can also act as “charging” points, if SOS-
like functionality is offered on a commercial basis. Finally, since
overlay nodes are only called upon to do encapsulated-packet for-

warding, cross-provider collaboration6 is a straightforward propo-
sition, compared to controlled exposure of the filtering mechanism
among different providers.

6. DISCUSSION
Our study of SOS is admittedly in its early stages. There are

several issues that need to be addressed for the service to have a
viable impact within the Internet. In this section, we discuss current
limitations and suggest directions for future research.

Attacks from inside the overlay: We have assumed that no ma-
licious user can successfully bypass our protection perimeter. How-
ever, in practice, security management oversights or development
bugs could lead to situations where breaches occur. An evaluation
of the potential damages that can be done from the inside, and ap-
proaches to limit these damages warrants further investigation.

A shared overlay: We have presented SOS as a means to permit
communication from a single confirmed source point to a single
target. The architecture should easily scale to handle numerous
confirmed source points transmitting to multiple targets. Users of
the infrastructure should treat it as an untrusted network in terms
of privacy or integrity (i.e., if their communications are of a sensi-
tive nature, they should be appropriately encrypted) — SOS only
attempts to address the DoS problem; as such, it should be treated
as a virtual WAN.

We note that in its current form, state for each target must be
maintained at the secret servlets and beacons that support those tar-
gets as well as at access points (to confirm a source point’s right to
contact the target). Scalability is improved by limiting the set of ac-
cess points, secret servlets and beacons that offer support to a given
target. However, this makes the service more prone to DoS attacks.
The overlay becomes more efficient at protecting users from DoS
attacks as it grows. Hence, it would be of interest for multiple orga-
nizations to utilize a shared overlay. Naturally, this would increase
the likelihood of the overlay being compromised from the inside.
We intend to investigate some form of sandboxing that could be
constructed within the shared overlay such that a breach in one or-
ganization’s security system would not lead to breaches in other
networks.

Timely delivery: To achieve security, SOS forces traffic through
a series of overlay points that perform different tasks. We suspect
that the latency across the path is far from minimal. Preliminary
simulations have shown the latency to be in the order of 10 times
larger than in the direct communications case (in the absense of
an attack). While this is a large overhead, it may be acceptable
in mission-critical systems. It would be of interest to see if there
are any “shortcuts” through the overlay that do not compromise
security, or to extend the architecture such that it contains a “knob”
that allows users to trade levels of security with timely delivery.

Analysis: The analysis presented here is preliminary. More so-
phisticated means of analyzing SOS, either via a more detailed
mathematical model or through prototype and experimentation, are
needed to better understand its operation.

7. CONCLUSION
In this paper, we addressed the problem of securing a communi-

cation service on top of the existing IP infrastructure from DoS at-
tacks. It is envisioned that such a service would be offered, among
others, to emergency teams in the aftermath of a disaster, to facil-
itate communication between the teams and various agencies and

�

While it is not strictly necessary that different service providers
connect their overlay networks, doing so would allow them to ex-
ploit the benefits of scale described in Section 4.

organizations over the Internet.
We attack the problem with a proactive mechanism, which is

composed of aggressive packet filtering in a site’s network periph-
ery, an overlay network that can self-heal during (and after) a DoS
attack, and a scalable access control mechanism that allows legit-
imate users to use the overlay network. We call this architecture
Secure Overlay Services, or SOS.

Through simple analytical models we show that DoS attacks di-
rected against any part of the SOS infrastructure have negligible
probability of disrupting the communication between two parties:
for instance, when only ten nodes act as beacons, ten nodes act as
secret servlets, and ten nodes act as access points, for an attack to
be successful in one out of ten thousand attempts, approximately
forty percent of the nodes in the overlay must be attacked simul-
taneously. Furthermore, the resistance of a SOS network against
DoS attacks increases greatly with the number of nodes that partic-
ipate in the overlay. Implementing an SOS infrastructure is fairly
straightforward and can be done using almost exclusively off-the-
shelf protocols and software.

We believe that our approach is a novel and powerful way of
countering DoS attacks, especially in service-critical environments.
While there remain several issues to be solved, our work should en-
courage researchers to investigate proactive approaches in address-
ing the DoS problem.

8. ACKNOWLEDGEMENTS
The authors wish to thank the anonymous reviewers for their

valuable comments and suggestions.

9. REFERENCES
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient Overlay Networks. In Proceedings of the 18th
Symposium on Operating Systems Principles (SOSP),
October 2001.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services.
Technical report, IETF RFC 2475, December 1998.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The KeyNote Trust Management System Version 2. Internet
RFC 2704, September 1999.

[4] M. Blaze, J. Ioannidis, and A. Keromytis. Trust Managent
for IPsec. In Proceedings of Network and Distributed System
Security Symposium (NDSS), pages 139–151, February 2001.

[5] D. D. Clark. The Design Philosophy of the DARPA Internet
Protocols. In Proceedings of ACM SIGCOMM, pages
106–114, 1988.

[6] F. Dabek, M. F. Kaashoek, R. Morris, D. Karger, and
I. Stoica. Wide-Area Cooperative Storage with CFS. In
Proceedings of ACM SOSP, 2001.

[7] D. Dean, M. Franklin, and A. Stubblefield. An Algebraic
Approach to IP Traceback. In Proceedings of the Network
and Dsitributed System Security Symposium (NDSS), pages
3–12, February 2001.

[8] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.
Generic routing encapsulation (GRE). Request for
Comments 2784, Internet Engineering Task Force, Mar.
2000.

[9] D. Harkins and D. Carrel. The Internet Key Exchange (IKE).
Request for Comments (Proposed Standard) 2409, Internet
Engineering Task Force, Nov. 1998.

[10] L. Heberlein and M. Bishop. Attack Class: Address
Spoofing. In Proceedings of the 19th National Information
Systems Security Conference, pages 371–377, October 1996.

[11] J. Ioannidis. Protocols for Mobile Networking. PhD thesis,
Columbia University, New York, 1993.

[12] J. Ioannidis and S. M. Bellovin. Implementing Pushback:
Router-Based Defense Against DDoS Attacks. In
Proceedings of the Network and Distributed System Security
Symposium (NDSS), February 2002.

[13] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith.
Implementing a Distributed Firewall. In Proceedings of
Computer and Communications Security (CCS), pages
190–199, November 2000.

[14] D. Karger, E. Lehman, F. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relievig Hot Spots on the
World Wide Web. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 654–663, May 1997.

[15] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. Request for Comments (Proposed
Standard) 2401, Internet Engineering Task Force, Nov. 1998.

[16] A. D. Keromytis. STRONGMAN: A Scalable Solution To
Trust Management In Networks. PhD thesis, University of
Pennsylvania, Philadelphia, 2001.

[17] L. Kleinrock. Queueing Systems, Volume I: Theory.
Wiley-Interscience, 1975.

[18] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial-of-Service Activity. In Proceedings of the 10th
USENIX Security Symposium, pages 9–22, August 2001.

[19] C. Perkins. IP encapsulation within IP. Request for
Comments 2003, Internet Engineering Task Force, Oct.
1996.

[20] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous connections and onion routing. IEEE Journal on
Special Areas in Communications, 16(4):482–494, 1998.

[21] K. W. Ross. Multiservice Loss Models for Broadband
Telecommunication Networks. Springer-Verlag, 1995.

[22] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in System Design. ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

[23] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
Congestion Control with a Misbehaving Receiver. ACM
Computer Communications Review, 29(5):71–78, October
1999.

[24] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Network Support for IP Traceback. ACM/IEEE Transactions
on Networking, 9(3):226–237, June 2001.

[25] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and
D. Zamboni. Analysis of a Denial of Service Attack on TCP.
In Proceedings of IEEE Security and Privacy, pages
208–223, May 1997.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM, 2001.

