
Experience with the KeyNote Trust Management
System: Applications and Future Directions

�

Matt Blaze
�

, John Ioannidis
�

, and Angelos D. Keromytis
�

�

AT&T Labs – Research, mab@research.att.com
�

AT&T Labs – Research, ji@research.att.com
�

CS Department, Columbia University, angelos@cs.columbia.edu

Abstract. Access control in distributed systems has been an area of intense re-
search in recent years. One promising approach has been that of trust manage-
ment, whereby authentication and authorization decisions are combined in a uni-
fied framework for evaluating security policies and credentials. In this paper, we
report on our experience of the past seven years using the PolicyMaker and the
KeyNote trust management systems in a variety of projects. We start with a brief
overview of trust management in general, and KeyNote in particular; we describe
several applications of trust management; we then discuss various features we
found missing from our initial version of KeyNote, which would have been use-
ful in the various applications it was used. We conclude the paper with our plans
for future research.

1 Introduction

The problem of controlling access to protected data or services has been a central issue
in computer and network security since the early days of the computing. At a high
level of abstraction, access control systems mediate access to a protected resource by
only allowing authorized users to perform an operation on said resource. A traditional
“system-security approach” to the processing of a request for action treats the task as a
combination of authentication and authorization. The receiving system first determines
who the requester is, typically by using an authentication protocol through which the
requester digitally “signs” the request, and then queries an internal database to decide
whether the signer should be granted access to the resources needed to perform the
requested action. It has been argued that this is the wrong approach for today’s ever-
changing networked world [1, 2]. In a large, heterogeneous, distributed system, there is
a huge set of people (and other entities) who may make requests, as well as a huge set
of requests that may be made. These sets change often and cannot be known in advance.
Even if the question “who signed this request?” could be answered reliably, it would not
help in deciding whether or not to take the requested action if the requester is someone
or something from whom the recipient is hearing for the first time.

�

This work was partly supported by DARPA and the NSF under contracts F39502-99-1-0512-
MOD P0001 and CCR-TC-0208972 respectively.

2

The right question in a far-flung, rapidly changing network becomes “is the crypto-
graphic key that signed this request authorized to take this action?” Traditional name-
key mappings and pre-computed access-control matrices are inadequate. The former
because they do not convey any access control information, and the latter because of
the amount of state required: given

�
users, � objects to which access needs to be

restricted, and � variables which need to be considered when making an access control
decision, we would need access control lists of minimum size

��� � associated with
each object, for a total of

��� � policy rules of total size
��� � � � . As the con-

ditions under which access is allowed or denied become more refined (and thus larger),
these products increase. In typical systems, the number of users and objects (services)
is large, whereas the number of variables is small; however, the combinations of vari-
ables in expressing access control policy can be arbitrarily large. Furthermore, these
rules have to be maintained, securely distributed, and stored across the entire network,
with the concomitant security risks. Thus, one needs a more flexible, more distributed
approach to authorization.

We give an overview of the trust management approach to authorization and access
control (Section 2). We describe the KeyNote [3] trust-management system (Section 3),
which has been used in a number of different projects, and give a brief description of
these in Section 4. Section 5 discusses future improvements to KeyNote, as are a result
of our experiences in building and using a trust management system for several years.

2 A Trust-Management Approach to Access Control

The trust-management approach, first introduced in [1], frames the question as follows:
“Does the set � of credentials prove that the request � complies with the local security
policy 	 ?” The difference with access control using traditional public-key certificates
is shown graphically in Figure 1.

Information found
"Traditional"
public-key
certificate

Name / Identity

External
lookup

Authorization

Authorization
Trust-Management
credential

Information found
on credential

on certificate

Fig. 1. The difference between access control using traditional public-key certificates and
trust management.

Each entity that receives requests must have a policy that serves as the ultimate
source of authority in the local environment. The entity’s policy may directly authorize
certain keys to take certain actions, but more typically it will delegate this responsi-
bility to credential issuers that it trusts to have the required domain expertise as well

3

Give response

Verifier Requester

Request, Key, Sig

KeyNote

Gather information
 local policy
 (remote credentials)Pass

information

Evaluate

Fig. 2. Interaction between an application and a trust-management system.

as relationships with potential requesters. The trust-management engine is a separate
system component that takes � ��� ��� 	�� as input, decides whether compliance with the
policy has been proven, and may also output some additional information about how to
proceed if the required proof has not been achieved. Figure 2 shows an example of the
interactions between an application and a trust-management system.

An essential part of the trust-management approach is the use of a general-purpose,
application independent algorithm for checking proofs of compliance. Why is this a
good idea? The traditional approach that products or services have taken when they
require some form of proof that requested transactions comply with policies, is to
use a special-purpose algorithm or language implemented from scratch. Such algo-
rithms/languages could be made more expressive and tuned to the particular intricacies
of the application. Compared to this, the trust-management approach offers two main
advantages. The first is simply one of engineering: it is preferable (in terms of simplicity
and code reuse) to have a standard library or module, and a consistent API, which can be
used in a variety of different applications. The second, and perhaps most important gain
is in soundness and reliability of both the definition and the implementation of proof of
compliance. Developers who set out to implement a hopefully simple, special-purpose
compliance checker (in order to avoid what they think are the overly complicated syn-
tax and semantics of a universal meta-policy) discover that they have underestimated
their application’s need for proof and expressiveness. As they discover the full extent
of their requirements, they may ultimately wind up implementing a system that is as
general and expressive as the complicated one they set out to avoid. A general-purpose
compliance checker can be explained, formalized, proven correct, and implemented in
a standard package, and applications that use it can be assured that the answer returned
for any given input � ��� ��� 	�� depends only on the input and not on any implicit policy
decisions (or bugs) in the design or implementation of the compliance checker.

At a high level of abstraction, trust-management systems have five components:

– A language for describing actions, which are operations with security consequences
that are to be controlled by the system.

– A mechanism for identifying principals, which are entities that can be authorized
to perform actions.

– A language for specifying application policies, which govern the actions that prin-
cipals are authorized to perform.

4

– A language for specifying credentials, which allow principals to delegate autho-
rization to other principals.

– A compliance checker, which provides a service to applications for determining
how an action requested by principals should be handled, given a policy and a set
of credentials.

By design, trust management unifies the notions of security policy, credentials, access
control, and authorization. An application that uses a trust-management system can
simply ask the compliance checker whether a requested action should be allowed. Fur-
thermore, policies and credentials are written in standard languages that are shared by
all trust-managed applications; the security configuration mechanism for one applica-
tion carries exactly the same syntactic and semantic structure as that of another, even
when the semantics of the applications themselves are quite different.

2.1 PolicyMaker

PolicyMaker was the first example of a trust-management engine. That is, it was the
first tool for processing signed requests that embodied the trust-management principles
articulated in Section 2. It addressed the authorization problem directly, rather than
handling the problem indirectly via authentication and access control, and it provided
an application-independent definition of proof of compliance for matching requests,
credentials, and policies. PolicyMaker was introduced in the original trust-management
paper by Blaze et al. [1], and its compliance-checking algorithm was later fleshed out
in [4]. A full description of the system can be found in [1, 4], and experience using it in
several applications is reported in [5–7].

PolicyMaker credentials and policies (collectively referred to as assertions) are fully
programmable: they are represented as pairs ��� ��� � , where � is the source of authority,
and � is a program describing the nature of the authority being granted as well as the
party or parties to whom it is being granted. In a policy assertion, the source is always
the keyword POLICY. For the PolicyMaker engine to be able to make a decision about
a requested action, the input supplied to it by the calling application must contain one or
more policy assertions; these form the trust root, which is the ultimate source of author-
ity for the decision about this request, as shown in Figure 3. In a credential assertion,
the source of authority is the public key of the issuing entity. Credentials must be signed
by their issuers, and the signatures must be verified before the credentials can be used.
PolicyMaker assertions can be written in any programming language that can be “safely”
interpreted by a local environment that has to import credentials from diverse (and pos-
sibly untrusted) issuing authorities. A version of AWK without file I/O operations and
with program execution time limits (to avoid denial of service attacks on the policy
system) was developed for early experimental work on PolicyMaker, because AWK’s
pattern-matching constructs are a convenient way to express authorizations. For a cre-
dential assertion issued by a particular authority to be useful in a proof that a request
complies with a policy, the recipient of the request must have an interpreter for the
language in which the assertion is written (so that the program contained in the asser-
tion can be executed). Thus, it would be desirable for assertion writers ultimately to
converge on a small number of assertion languages so that receiving systems have to

5

Delegation to a (user’s) public key

Trusted assertions

Delegation of authority

Fig. 3. Delegation in PolicyMaker, starting from a set of trusted assertions. The dotted lines
indicate a delegation path from a trusted assertion (public key) to the user making a request.
If all the assertions along that path authorize the request, it will be granted.

support only a small number of interpreters and so that carefully crafted credentials
can be widely used. However, the question of which languages these would be was
left open by the PolicyMaker project. A positive aspect of PolicyMaker’s not insisting
on a particular assertion language was that all the work that went into designing, ana-
lyzing, and implementing the PolicyMaker compliance-checking algorithm would not
have to be redone every time the assertion language was changed or a new language
was introduced. The proof of compliance and assertion-language design problems are
orthogonal in PolicyMaker and can be worked on independently.

The main technical contribution of the PolicyMaker project was fully specifying
and analyzing the notion of proof of compliance. We give an overview of PolicyMaker’s
approach to compliance checking here; a complete treatment of the compliance checker
can be found in [4]. The PolicyMaker runtime system provides an environment in which
the policy and credential assertions fed to it by the calling application can cooperate to
try to produce a proof that the request complies with policy. Among the requirements
for this cooperation are a method of inter-assertion communication and a method for
determining that assertions have collectively succeeded or failed to produce a proof.

Inter-assertion communication in PolicyMaker is done via a simple, append-only
data structure on which all participating assertions record intermediate results. Specif-
ically, PolicyMaker initializes the proof process by creating a “blackboard” containing
only the request string � and the fact that no assertions have thus far approved the
request or anything else. Then PolicyMaker runs the various assertions, possibly mul-
tiple times each. When assertion � � � � � � � is run, it reads the contents of the blackboard
and then adds to the blackboard one or more acceptance records � � � � � ��� ��� � . � ��� is
an application-specific action that source � � approves, based on the partial proof that
has been constructed thus far. � ��� may be the input request � , or it may be some re-
lated action that this application uses for inter-assertion communication. Note that the

6

meanings of the action strings � ��� are understood by the application-specific assertion
programs � � , but they are not understood by PolicyMaker. All PolicyMaker does is run
the assertions and maintain the global blackboard, making sure that the assertions do
not erase acceptance records previously written by other assertions, fill up the entire
blackboard so that no other assertions can write, or exhibit any other non-cooperative
behavior. PolicyMaker never tries to interpret the action strings � ��� .

A proof of compliance is achieved if, after PolicyMaker has finished running asser-
tions, the blackboard contains an acceptance record indicating that a policy assertion
approves the request � . Some of the nontrivial decisions PolicyMaker must make in-
clude the order in which assertions should be run, the number of times each assertion
should be run, and when to discard a non-cooperative assertion.

Although the most general version of the compliance-checking problem allows as-
sertions to be arbitrary functions, the computationally tractable version that is analyzed
in [4] and implemented in PolicyMaker is guaranteed to be correct only when all asser-
tions are monotonic. (Basically, if a monotonic assertion approves action � when given
evidence set

�
, then it will also approve action � when given an evidence set that con-

tains
�

; see [4] for a formal definition. By evidence set we mean all the information an
assertion uses to reach a decision; this information is typically related to the request � ,
but may contain additional information about the system’s status etc.) In particular, cor-
rectness is guaranteed only for monotonic policy assertions, and this excludes certain
types of policies that could used in practice, most notably those that make explicit use
of “negative credentials” such as revocation lists. Although it is a limitation, the mono-
tonicity requirement has certain advantages. One of them is that, although the compli-
ance checker may not handle all potentially desirable policies, it is at least analyzable
and provably correct on a well-defined class of policies. Furthermore, the requirements
of many non-monotonic policies can often be achieved by monotonic policies. For ex-
ample, the effect of requiring that an entity not occur on a revocation list can also be
achieved by requiring that it present a “certificate of non-revocation”; the choice be-
tween these two approaches involves trade-offs among the (system-wide) costs of the
two kinds of credentials and the benefits of a standard compliance checker with prov-
able properties. Finally, restriction to monotonic assertions encourages a conservative,
prudent approach to security: in order to perform an action, a user must present an
adequate set of affirmative credentials; no potentially dangerous action is allowed by
default simply because of the absence of negative credentials.

3 The KeyNote Trust-Management System

The design of KeyNote [3] followed the same principles as PolicyMaker, using cre-
dentials that directly authorize actions instead of dividing the authorization task into
authentication and access control. Two additional design goals for KeyNote were stan-
dardization and ease of integration into applications. KeyNote also requires that creden-
tials and policies be written in a specific assertion language, designed to work smoothly
with KeyNote’s compliance checker. By using a specific assertion language that is flex-
ible enough to handle the security policy needs of different applications, KeyNote goes
further than PolicyMaker toward facilitating efficiency, interoperability, and widespread

7

use of carefully written credentials and policies, at the cost of reduced expressibility and
interaction between different policies, compared to PolicyMaker. A sample assertion is
shown in Figure 4, with keys and signatures artificially shortened for readability.

In KeyNote, the authority to perform trusted actions is associated with one or more
principals. A principal may be a physical entity, a process in an operating system, a
public key, or any other convenient abstraction. KeyNote principals are identified by
a string called a Principal Identifier. In some cases, a Principal Identifier will contain
a cryptographic key interpreted by the KeyNote system (e.g., for credential signature
verification). In that case, the principal can digitally sign assertions and distribute them
over untrusted networks for use by other KeyNote compliance checkers. These signed
assertions are also called credentials, and serve a role similar to that of traditional pub-
lic key certificates. Policies and credentials share the same syntax and are evaluated
according to the same semantics. A principal can therefore convert its policy assertions
into credentials simply by digitally signing them. In other cases, Principal Identifiers
may have a structure that is opaque to KeyNote. Principals perform two functions of
concern to KeyNote: they request actions and they issue assertions. Actions are any
trusted operations that an application places under KeyNote control. Assertions dele-
gate the authorization to perform actions to other principals.

A calling application passes to a KeyNote evaluator a list of credentials, policies,
requester principals, and an Action Attribute Set. This last element consists of a list of
attribute/value pairs, similar in some ways to the Unix shell environment. The action at-
tribute set is constructed by the calling application and contains all information deemed
relevant to the request and necessary for the trust decision. The action-environment at-
tributes and the assignment of their values must reflect the security requirements of the
application accurately. The semantics of the names and values are not interpreted by
KeyNote itself; they vary from application to application and must be agreed upon by
the writers of applications and the writers of the policies and credentials that will be
used by them. Identifying the attributes to be included in the action attribute set is per-
haps the most important task in integrating KeyNote into new applications. The result of
the evaluation is an application-defined string that is passed back to the application. This
policy compliance value returned from a KeyNote query advises the application how to
process the requested action. In the simplest case, the compliance value is boolean (e.g.,
“reject” or “approve”). Assertions can also be written to select from a range of possible
compliance values, when appropriate for the application (e.g., “no access”, “restricted
access”, “full access”). Applications can configure the relative ordering (from weakest
to strongest) of compliance values at query time.

As in PolicyMaker, policies and credentials (collectively called assertions) have the
same format. The only difference between policies and credentials is that a policy (that
is, an assertion with the keyword POLICY in the Authorizer field) is locally trusted
by the compliance-checker, and thus need not be signed. Assertions are structured so
that the Licensees field specifies explicitly the principal or principals to which authority
is delegated. Syntactically, the Licensees field is a formula in which the arguments are
public keys and the operations are conjunction, disjunction, and threshold.

The “programs” in KeyNote are encoded in the Conditions field and are essen-
tially tests on action attributes. These tests are string comparisons, numerical opera-

8

KeyNote-Version: 2
Authorizer: "rsa-hex:1023abcd"
Licensees: "dsa-hex:986512a1" || "rsa-hex:19abcd02"
Comment: Authorizer delegates read access to

either of the Licensees
Conditions: (file == "/etc/passwd" &&

access == "read") -> "true";
Signature: "sig-rsa-md5-hex:f00f5673"

Fig. 4. Sample KeyNote assertion authorizing either of the two keys appearing in the Li-
censees field to read the file “/etc/passwd”.

tions and comparisons, and pattern-matching operations. We chose a simple language
for KeyNote assertions for lightweight operation (compared to AWK, used by Poli-
cyMaker), safety, and readability. As we shall see in Section 4, the simplicity of the
language has not unduly impacted its usefulness in a variety of different applications,
although there are several improvements we intend to make in a future release, as we
discuss in Section 5.

In PolicyMaker, compliance proofs are constructed via repeated evaluation of asser-
tions, along with an arbitrated “blackboard” for storage of intermediate results and inter-
assertion communication. In contrast, KeyNote uses an algorithm that attempts (recur-
sively) to satisfy at least one policy assertion. Referring again to Figure 3, KeyNote
treats keys as vertices in the graph, with (directed) edges representing assertions dele-
gating authority. In the prototype implementation, we used a Depth First Search algo-
rithm, starting from the set of trusted (“POLICY”) assertions and trying to construct
a path to the key of the user making the request. An edge between two vertices in the
graph exists only if (a) there exists an assertion where the Authorizer and the Licensees
are the keys corresponding to the two vertices, and (b) the predicate encoded in the
Conditions field of that KeyNote assertion authorizes the request.

Thus, satisfying an assertion entails satisfying both the Conditions field and the Li-
censees key expression. Note that there is no explicit inter-assertion communication
as in PolicyMaker; the acceptance records returned by program evaluation are used
internally by the KeyNote evaluator and are never seen directly by other assertions. Be-
cause KeyNote’s evaluation model is a subset of PolicyMaker’s, the latter’s compliance-
checking guarantees are applicable to KeyNote. Whether the more restrictive nature of
KeyNote allows for stronger guarantees to be made is an open research question.

Ultimately, for a request to be approved, an assertion graph must be constructed
between one or more policy assertions and one or more keys that signed the request.
Because of the evaluation model [3], an assertion located somewhere in a delegation
graph can effectively only refine (or pass on) the authorizations conferred on it by the
previous assertions in the graph. (This principle also holds for PolicyMaker.)

It should be noted that PolicyMaker’s restrictions regarding “negative credentials”
also apply to KeyNote. Certificate revocation lists (CRLs) are not built into the KeyNote

9

(or the PolicyMaker) system; these can be provided at a higher (or lower) level, perhaps
even transparently to KeyNote. The problem of credential discovery is also not explic-
itly addressed in KeyNote, but we discuss possible solutions in Section 5.

Finally, note that KeyNote, like other trust-management engines, does not directly
enforce policy; it only provides “advice” to the applications that call it. KeyNote as-
sumes that the application itself is trusted and that the policy assertions are correct.
Nothing prevents an application from submitting misleading assertions to KeyNote or
from ignoring KeyNote altogether.

4 Applications of KeyNote

In this section we briefly describe the use of KeyNote is systems we and others have
built. Although the ability to use KeyNote in such a wide range of applications validates
its generality, we discovered several shortcomings to the system that we intend to fix in
the next version. We discuss these future directions in the next section.

Network-layer Access Control One of the first applications of KeyNote was providing
access control services for the IPsec [8] architecture. The IPsec protocol suite, which
provides network-layer security for the Internet, has been standardized in the IETF
and is beginning to make its way into commercial implementations of desktop, server,
and router operating systems. IPsec does not itself address the problem of managing
the policies governing the handling of traffic entering or leaving a node running the
protocol. By itself, the IPsec protocol can protect packets from external tampering and
eavesdropping, but does nothing to control which nodes are authorized for particular
kinds of sessions or for exchanging particular kinds of traffic. In many configurations,
especially when network-layer security is used to build firewalls and virtual private
networks, such policies may necessarily be quite complex.

In [9, 10] we introduced a new policy management architecture for IPsec. A compli-
ance check was added to the IPsec architecture that tests packet filters proposed when
new security associations are created for conformance with the local security policy,
based on credentials presented by the peer node. Security policies and credentials can
be quite sophisticated (and specified in KeyNote), while still allowing very efficient
packet-filtering for the actual IPsec traffic. The resulting implementation [11] has been
in use in the OpenBSD [12] operating system for several years.

Distributed Firewalls Conventional firewalls rely on topology restrictions and con-
trolled network entry points to enforce traffic filtering. The fundamental limitation of
the firewall approach to network security is that a firewall cannot filter traffic it does not
see; by implication, everyone on the protected side has to be considered trusted. While
this model has worked well for small to medium size networks, networking trends such
as increased connectivity, higher line speeds, extranets, and telecommuting threaten
to make it obsolete. To address the shortcomings of traditional firewalls, the concept
of a distributed firewall has been proposed [13]. In this scheme, security policy is still
centrally defined, but enforcement is left up to the individual endpoints. Credentials dis-
tributed to every node express parts of the overall network policy. The use of KeyNote

10

for access control at the network layer enabled us to develop a prototype distributed fire-
wall [14]. Under certain circumstances, our prototype exhibited better performance than
the traditional-firewall approach, as well as handle the increasing protocol complexity
and the use of end-to-end encryption.

This functionality has been used in other projects where dynamic access control
was necessary. In [15], the ability to effectively control a large number of firewalls,
any of which can be contacted by any of a large number of potentially users was al-
lowed to build a distributed denial of service (DDoS) resistant architecture for allowing
authorized users to contact sites that are under attack.

The STRONGMAN Architecture The distributed firewall concept was later general-
ized in the STRONGMAN architecture, which allowed coordinated and decentralized
management of a large number of nodes and services throughout the network stack [16,
17]. STRONGMAN offers three new approaches to scalability, applying the principle
of local policy enforcement complying with global security policies. First is the use
of a compliance checker to provide great local autonomy within the constraints of a
global security policy. Second is a mechanism to compose policy rules into a coherent
enforceable set, e.g., at the boundaries of two locally autonomous application domains.
Third is the lazy instantiation of policies to reduce the amount of state that enforcement
points need to maintain. STRONGMAN is capable of managing such diverse resources
and protocols as firewalls, web access control (discussed later), filesystem accesses,
and process sandboxing. Work on STRONGMAN is continuing, focusing on the ease
of management and correctness components of the system.

Web Access Control Another use of KeyNote has been in web access control, where
it is used to mediate requests for pages or access to CGI scripts. To that end, we built
a module for the Apache web server, mod keynote, which performs the compliance
checking functions on a per-request basis. This module has also been distributed with
the OpenBSD operating system for several years, and the functionality has been folded
into the STRONGMAN architecture.

Micropayments: Microchecks and Fileteller One of the more esoteric uses of KeyNote
has been as a micropayment scheme that requires neither online transactions nor trusted
hardware for either the payer or payee. Each payer is periodically issued certified cre-
dentials that encode the type of transactions and circumstances under which payment
can be guaranteed. A risk management strategy, taking into account the payer’s his-
tory, and other factors, can be used to generate these credentials in a way that limits the
aggregated risk of uncollectible or fraudulent transactions to an acceptable level. [18]
showed a practical architecture for such a system that used KeyNote to encode the cre-
dentials and policies, and described a prototype implementation of the system in which
vending machine purchases were made using off-the-shelf consumer PDAs.

[19] uses this micropayment architecture to build a credential-based network file
storage system with provisions for paying for file storage and getting paid when others
access files. Users get access to arbitrary amounts of storage anywhere in the network,
and use a micropayments system to pay for both the initial creation of the file and any
subsequent accesses. Wide-scale information sharing requires that a number of issues

11

be addressed; these include distributed access, access control, payment, accounting, and
delegation (so that information owners may allow others to access their stored content).
Utilizing the same mechanism for both access control and payment results in an elegant
and scalable architecture. Ongoing work in this area is examining distributed peer-to-
peer filesystems and pay-per-use access to 802.11 networks [20].

Active Networking Finally, STRONGMAN has been used in the context of active
networks [21] to provide access control services to programmable elements [22–24].
An active network is a network infrastructure that is programmable on a per-user or
even per-packet basis. Increasing the flexibility of such network infrastructures invites
new security risks. Coping with these security risks represents the most fundamental
contribution of active network research. The security concerns can be divided into those
which affect the network as a whole and those which affect individual elements. It is
clear that the element problems must be solved first, as the integrity of network-level
solutions will be based on trust of the network elements. In the SANE architecture,
KeyNote was used to limit the privileges of network users and their mobile code, by
specifying the operations such code was allowed to perform on any particular active
node. KeyNote was used in a similar manner in the FLAME architecture [25–27], and
to provide an economy for resources in an active network [28].

Grid Computing KeyNote is used to manage the authorization relationships in the
Secure WebCom Metacomputer [29, 30]. WebCom [31] is a client/server based system
that may be used to schedule mobile application components for execution across a net-
work. In Secure WebCom, KeyNote credentials are used to determine the authorization
of x509-authenticated SSL connections between WebCom masters and clients. Client
credentials are used by WebCom masters to determine what operations the client is au-
thorized to execute; WebCom master credentials are used by clients to determine if the
master has the authorization to schedule the (trusted) mobile computation that the client
is about to execute.

Transferable Micropayments WebCom is a network of systems that work together
to solve large problems. Systems that provide access to their resources can be paid
using hash-chain based micropayments [32]. KeyNote credentials are used to codify
hash-chain micropayment contracts; determining whether a particular micropayment
should be accepted amounts to a KeyNote compliance check that the micropayment is
authorized. This scheme is generalized in [33] to support the efficient transfer of mi-
cropayment contracts whereby a transfer amounts to delegation of authorization for the
contract. Characterizing a payment scheme as a trust management problem means that
trust policies that are based on both monetary and conventional authorization concerns
can be formulated.

Case-based Reasoning Systems It is considered in [34] how similarity techniques that
are used by case-based reasoning systems might be adapted to support degrees of im-
precision when delegating authority based on KeyNote credentials. A key is considered
authorized for some action if it authorized for another similar action, within some de-
gree of similarity. [34] demonstrates how to codify similarity measures within KeyNote
credentials such that a test for authorization amounts to a compliance check.

12

5 Future Directions

We now discuss the various improvements we plan on making to the next version of
KeyNote, based on our experiences with several applications as well as comments from
the user community. These improvements include changes to the language and asser-
tion format as well as enhancements to our distribution implementation. We focus on
changes that will allow us to use KeyNote in new contexts and classes of applications.

Bit Operations A regrettable omission that became almost immediately obvious was
KeyNote’s lack of support for bit-level operations (bit-wise AND, OR, XOR, NOT,
etc.). Lack of bit operations made it especially awkward to apply KeyNote to network-
layer access control, as discussed in Section 4. In this application, we needed to test IP
addresses against network subnets (e.g., “does the address 128.59.19.32 belong to the
128.59.23.255/21 subnet ?”). In pseudo-code, this comparison would be expressed as
“128.59.19.32 & 255.255.248.0 = = 128.59.23.255 & 255.255.248.0”. Since KeyNote
does not support bit-wise operations, we had to resort to tricks such as the string-wise
comparisons “128.59.19.32 ��� 128.59.16.0 && 128.59.19.32 ��� 128.59.23.255”.
This is both visually unappealing and non-intuitive; IPv6, with its longer addresses,
will only exacerbate this problem. These comparisons can be performed more con-
cisely by breaking up the address into individual octets and performing numerical op-
erations/comparisons, but the end-result is even less comprehensible to a human reader.
We intend to extend KeyNote to natively support bit-wise operations, similar to string
and numeric operations.

Sets and Arrays By modern programming language standards, KeyNote does not seem
to support an especially rich collection of data types or data structures. This was a delib-
erate design decision, of course, in line with our minimalist philosophy, but, as with the
lack of bit operations, experience has suggested some obvious potential enhancements.
In particular, in access control systems and other security schemes, it is often natural
to reason about sets, arrays, and lists. In the current KeyNote system, such operations
must be simulated with simple strings and regular expression operations, but this often
leads to rather opaque (and inefficient) constructions. A future version of the language
may benefit from a richer collection of set data structures, along with operations for
testing membership, etc.

Function Calls Currently, the action environment must be populated by the invoking
application prior to performing the compliance check. In the prototype, it is possible
to populate the action environment on-demand (i.e., as each action attribute is accessed
by an assertion). However, it is not possible to use parameterized action attributes, i.e.,
populate an action attribute based on the content of some other variable or a parameter
contained in the assertion itself. For example, consider a policy that allows any user
access to a file as long as there is a particular entry for that user in a system database.
In principle, the action environment could be populated with the complete database
— however, the assertion writer would have to know a priori the names of all users
(if they are used as the lookup key in the database), and these names would then be
used as action attributes (containing that user’s information), in order to access them

13

from inside an assertion. This will result in considerable initialization costs as well as
semantic confusion (since new variable will have to appear in the action environment)t
as new users are added. To solve this problem, we intend to add application-specific
function calls. These will take as argument a string, and return a string.

Naming and Scoping One of the earliest architectural goals of KeyNote (and, indeed,
of the original PolicyMaker system) was to minimize the distinction between a local
“policy” and a remote “credential.” In our philosophy, the only difference between a
policy and a credential is that the latter is signed; a corollary of this should be that one
can convert a local policy into a remotely-distributable and usable credential simply by
signing it. In practice, however, this is only true for the simplest of policies. Policies
might refer to principal identifies in assertions that are meaningful only locally and that
are not expected to be visible outside the context of the policy itself.

To make it truly possible to treat a policy as a single construct that can be signed
and used remotely, KeyNote would need a scope system that would allow an entire
group of assertions to share a single, private principal naming context and be signed and
exported as a group. “Internal” principal names would not be visible outside their scope.
This should be a straightforward change to the language, entailing the introduction of
syntactic scope grouping operation and the obvious semantics for resolving names.

Exception Handling The algorithm currently used for determining the acceptance
record of an assertion uses the highest value returned from all the clauses in the Condi-
tions field. For example, the following pair of clauses will return “true” if the AES or
3DES is used as the encryption algorithm, regardless of the authentication algorithm.

Conditions:
app_domain == "IPsec policy" -> {
encryption_algorithm == "AES" ||

encryption_algorithm == "3DES" -> "true";
authentication_algorithm == "SHA1" -> "false";

}

This approach has made rule specification very easy and flexible. One disadvan-
tage, however, has been the difficulty of concisely disallowing one particular request
from among a large set of acceptable requests. To address this, we intend to extend the
KeyNote language to contain an “except” construct that can be used to wrap classes of
clauses. Once all the classes in the wrapped class have been evaluated, another set of
clauses associated with the construct are evaluated to handle any exceptions. If any of
these clauses match, the acceptance record of the wrapped class is modified accordingly.
Syntactically, the construct might look like:

Conditions:
app_domain == "IPsec policy" && {
encryption_algorithm == "3DES" ||

encryption_algorithm == "AES" -> "true";
} except {

authentication_algorithm == "none" -> "false";
}

14

Credential Attributes It is sometimes useful in the process of evaluating a KeyNote
assertion to change the action attribute set that subsequent assertions will see. For ex-
ample, if a KeyNote assertion would evaluate to true if a particular set of conditions is
met, it may want to communicate this fact to subsequent assertions by adding an action
attribute to the action attribute set that they will see. This tries to recapture some of
PolicyMaker’s blackboard functionality.

Syntactically, such a feature would be implemented as a new KeyNote field, the
Attributes: field. The syntax is similar to the Local-Constants: field; just a
list of name/value pairs. However, unlike the local-constants field which causes just lex-
ical substitution in the current credential, the Attributes field affects the action attributes
set of all subsequent evaluations.

Multiple Assertion Representations Some environments, e.g., the WWW DAV sys-
tem [35], use specific languages and representation medium in all aspects of the system
(in the case of DAV, XML is used). When using KeyNote in such environments, it would
be useful to have alternate, semantically equivalent representations for assertions. Our
work in web access control (Section 4) has prompted us to investigate an XML schema
for KeyNote assertions. One challenge is the integration of assertions, represented in
different formats, in the same compliance check, e.g., using policies in the currently-
used format and credentials in an XML-based encoding.

Revocation Perhaps the most common request for a new feature is support for some
form of revocation. As we discussed in Section 2, KeyNote (and monotonic trust-
management systems in general) do not support the notion of “negative credentials”,
as these make it difficult to reason about the correctness of the system and the evalua-
tion logic. Revocation can be built independent of the compliance checker, at a differ-
ent level. However, this makes use of KeyNote less natural for applications that have
an explicit notion of revocation; such applications must parse KeyNote credentials and
perform the necessary revocation checks in the application code instead of leaving it
to the trust management engine. The KeyNote language itself natively supports only
time-based revocation (i.e., credential expiration), by encoding the appropriate rules in
the Conditions field of an assertion, e.g., the following expression:

Authorizer: SOME_KEY
Licensees: SOME_OTHER_KEY
Conditions: app_domain == "IPsec" &&

(encryption == "3DES" || encryption == "AES") &&
current_time <= "20031215052500" -> "true";

Signature: ...

would cause the credential to return “false” after 5:25am, December 15, 2003.
Revocation is a difficult problem in general, and is especially so for monotonic

trust management. One possible approach for a future version of KeyNote is to treat
revocation as another principal in the Licensees field. To encode an revocation rule
under a particular scheme, e.g., the OCSP protocol, we would simply use a conjunctive
expression in the Licensees field:

15

Authorizer: SOME_KEY
Licensees: SOME_OTHER_KEY &&
"OCSP:revocation.cs.columbia.edu:3232:REVOCATION_KEY"

Conditions: app_domain == "IPsec" &&
(encryption == "3DES" || encryption == "AES") &&
current_time <= "20031215052500" -> "true";

Signature: ...

In this example, the assertion would allow a request to proceed if the conditions
were fulfilled (the encryption algorithm was 3DES or AES), it had not expired, and the
OCSP revocation server found at revocation.cs.columbia.edu, port 3232, did not indi-
cate to us that the credential had been marked as invalid. The REVOCATION KEY can
be used to protect the communication between the compliance checker and the revo-
cation server. Other revocation schemes such as Certificate Revocation Lists (CRLs),
Delta-CRLs, refresher certificates, etc. can be used in the same manner.

Bytecode Interpreter The KeyNote prototype was built using the lex and yacc tools to
parse the assertion format. As a result, the prototype contains a lot of code that depends
on the standard � library, for doing string operations and memory allocation. Further-
more, because these tools are meant to support a large class of grammars, the generated
parsers are fairly general and, consequently, more inefficient than a hand-crafted parser
would be. While these constrains are not particularly restrictive, they make it practically
impossible to use KeyNote inside an operating system kernel. To allow for easy inte-
gration of KeyNote inside an operating system kernel (or resource-limited embedded
devices), we intend to create a bytecode interpreter. A front-end compiler will parse
the credentials and convert them from the respective format (e.g., the current format, or
an XML-based one) to a bytecode program that can be uploaded to the kernel-resident
compliance checker. In this manner, it will be similar to the BPF packet-filtering sys-
tem [36]. Another advantage of this approach is the ability to use credentials of different
formats in the context of the same policy evaluation. We are currently investigating the
appropriate bytecode instruction format and semantics to use. Note that this improve-
ment need not entail changes to the KeyNote language per se.

Debugging Tools Since we released KeyNote, we frequently receive requests for help
in debugging some problem with KeyNote. In practically all cases, the users are not
setting the correct values in the action environment (that is, values corresponding to
what their policies check for). Similar problems arise from typos or using the wrong key
as an Authorizer or Licensee in a credential. A good interactive debugging tool (e.g.,
a GUI-based trial-and-error system) would save both KeyNote users and implementors
considerable time and frustration, and, again, need not entail changes to the language.

6 Concluding Remarks

We reported our experience using the KeyNote trust-management system, on satisfying
the needs of authorization and access control for a number of different applications. As
a result, we have determined a set of features and improvements that we intend to inte-
grate into a future version of KeyNote. Despite these omissions from the initial release,

16

KeyNote has proven remarkably flexible and useful in a variety of contexts. We believe
that we have thus validated our original hypothesis from 5 years ago, that a simple trust-
management system can address the needs of most applications that have authorization
and access control requirements. Our future work will focus on solving specific prob-
lems, easing the use of KeyNote in new environments, and exploring new directions for
trust management, without diverting from our goal of simplicity and compactness.

Acknowledgments

We would like to thank Simon Foley for contributing some of the text in Section 4.

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Proceedings of
the 17th Symposium on Security and Privacy. (1996) 164–173

2. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The Role of Trust Management in
Distributed Systems Security. In: Secure Internet Programming. Volume 1603 of Lecture
Notes in Computer Science. Springer-Verlag Inc., New York, NY, USA (1999) 185–210

3. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote Trust Management
System Version 2. Internet RFC 2704 (1999)

4. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance Checking in the PolicyMaker Trust-
Management System. In: Proceedings of the Financial Cryptography ’98, Lecture Notes in
Computer Science, vol. 1465. (1998) 254–274

5. Blaze, M., Feigenbaum, J., Resnick, P., Strauss, M.: Managing Trust in an Information
Labeling System. In: European Transactions on Telecommunications, 8. (1997) 491–501

6. Lacy, J., Snyder, J., Maher, D.: Music on the Internet and the Intellectual Property Protection
Problem. In: Proceedings of the International Symposium on Industrial Electronics, IEEE
Press (1997) SS77–83

7. Levien, R., McCarthy, L., Blaze, M.: Transparent Internet E-mail Security. http://www.cs.-
umass.edu/˜lmccarth/crypto/papers/email.ps (1996)

8. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. RFC 2401 (1998)
9. Blaze, M., Ioannidis, J., Keromytis, A.: Trust Management for IPsec. In: Proceedings of

Network and Distributed System Security Symposium (NDSS). (2001) 139–151
10. Blaze, M., Ioannidis, J., Keromytis, A.: Trust Management for IPsec. ACM Transactions on

Information and System Security (TISSEC) 32 (2002) 1–24
11. Hallqvist, N., Keromytis, A.D.: Implementing Internet Key Exchange (IKE). In: Proceedings

of the Annual USENIX Technical Conference, Freenix Track. (2000) 201–214
12. de Raadt, T., Hallqvist, N., Grabowski, A., Keromytis, A.D., Provos, N.: Cryptography in

OpenBSD: An Overview. In: Proceedings of the 1999 USENIX Annual Technical Confer-
ence, Freenix Track. (1999) 93–101

13. Bellovin, S.M.: Distributed Firewalls. ;login: magazine, issue on security (1999) 37–39
14. Ioannidis, S., Keromytis, A., Bellovin, S., Smith, J.: Implementing a Distributed Firewall.

In: Proceedings of Computer and Communications Security (CCS). (2000) 190–199
15. Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: Secure Overlay Services. In: Proceedings

of ACM SIGCOMM. (2002) 61–72
16. Keromytis, A., Ioannidis, S., Greenwald, M., Smith, J.: The STRONGMAN Architecture.

In: Proceedings of DISCEX III. (2003)

17

17. Keromytis, A.D.: STRONGMAN: A Scalable Solution To Trust Management In Networks.
PhD thesis, University of Pennsylvania, Philadelphia (2001)

18. Blaze, M., Ioannidis, J., Keromytis, A.D.: Offline Micropayments without Trusted Hardware.
In: Proceedings of the 5h International Conference on Financial Cr yptography. (2001) 21–40

19. Ioannidis, J., Ioannidis, S., Keromytis, A., Prevelakis, V.: Fileteller: Paying and Getting
Paid for File Storage. In: Proceedings of the 6th International Conference on Financial
Cryptography. (2002)

20. Miltchev, S., Prevelakis, V., Ioannidis, S., Ioannidis, J., Keromytis, A.D., Smith, J.M.: Se-
cure and Flexible Global File Sharing. In: Proceedings of the USENIX Technical Annual
Conference, Freenix Track. (2003)

21. Alexander, D.S., Arbaugh, W.A., Hicks, M., Kakkar, P., Keromytis, A.D., Moore, J.T.,
Gunter, C.A., Nettles, S.M., Smith, J.M.: The SwitchWare Active Network Architecture.
IEEE Network, special issue on Active and Programmable Networks 12 (1998) 29–36

22. Alexander, D.S., Arbaugh, W.A., Keromytis, A.D., Smith, J.M.: A Secure Active Network
Environment Architecture: Realization in SwitchWare. IEEE Network, special issue on Ac-
tive and Programmable Networks 12 (1998) 37–45

23. Alexander, D.S., Arbaugh, W.A., Keromytis, A.D., Muir, S., Smith, J.M.: Secure Quality of
Service Handling (SQoSH). IEEE Communications 38 (2000) 106–112

24. Alexander, D., Menage, P., Keromytis, A., Arbaugh, W., Anagnostakis, K., Smith, J.: The
Price of Safety in an Active Network. Journal of Communications (JCN), special issue on
programmable switches and routers 3 (2001) 4–18

25. Anagnostakis, K.G., Ioannidis, S., Miltchev, S., Smith, J.M.: Practical network applications
on a lightweight active management environment. In: Proceedings of the 3rd International
Working Conference on Active Networks (IWAN). (2001)

26. Anagnostakis, K.G., Ioannidis, S., Miltchev, S., Ioannidis, J., Greenwald, M.B., Smith, J.M.:
Efficient packet monitoring for network management. In: Proceedings of IFIP/IEEE Network
Operations and Management Symposium (NOMS) 2002. (2002)

27. Anagnostakis, K.G., Greenwald, M.B., Ioannidis, S., Miltchev, S.: Open Packet Monitoring
on FLAME: Safety, Performance and Applications. In: Proceedings of the 4rd International
Working Conference on Active Networks (IWAN). (2002)

28. Anagnostakis, K.G., Hicks, M.W., Ioannidis, S., Keromytis, A.D., Smith, J.M.: Scalable
Resource Control in Active Networks. In: Proceedings of the Second International Working
Conference on Active Networks (IWAN). (2000) 343–357

29. Foley, S., Quillinan, T., Morrison, J., Power, D., Kennedy, J.: Exploiting KeyNote in We-
bCom: Architecture Neutral Glue for Trust Management. In: Fifth Nordic Workshop on
Secure IT Systems. (2001)

30. Foley, S., Quillinan, T., Morrison, J.: Secure Component Distribution Using WebCom.
In: Proceedings of the 17th International Conference on Information Security (IFIP/SEC).
(2002)

31. Morrison, J., Power, D., Kennedy, J.: WebCom: A Web Based Distributed Computation
Platform. In: Proceedings of Distributed computing on the Web. (1999)

32. Foley, S., Quillinan, T.: Using Trust Management to Support MicroPayments. In: Proceed-
ings of the Annual Conference on Information Technology and Telecommunications. (2002)

33. Foley, S.: Using Trust Management to Support Transferable Hash-Based Micropayments.
In: Proceedings of the International Financial Cryptography Conference. (2003)

34. Foley, S.: Supporting Imprecise Delegation in KeyNote. In: Proceedings of 10th International
Security Protocols Workshop. (2002)

35. Whitehead, E.: World Wide Web Distributed Authoring and Versioning (WebDAV): An
Introduction. ACM StandardView 5 (1997) 3–8

36. McCanne, S., Jacobson, V.: A BSD Packet Filter: A New Architecture for User-level Packet
Capture. In: Proceedings of USENIX Winter Technical Conference, Usenix (1993) 259–269

