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Cross-Site Scripting (XSS) is one of the most common web application vulnerabilities. It is therefore some-
times referred to as the “buffer overflow of the web.” Drawing a parallel from the current state of practice
in preventing unauthorized native code execution (the typical goal in a code injection), we propose a script
whitelisting approach to tame JavaScript-driven XSS attacks. Our scheme involves a transparent script
interception layer placed in the browser’s JavaScript engine. This layer is designed to detect every script
that reaches the browser, from every possible route, and compare it to a list of valid scripts for the site or
page being accessed; scripts not on the list are prevented from executing. To avoid the false positives caused
by minor syntactic changes (e.g., due to dynamic code generation), our layer uses the concept of contextual
fingerprints when comparing scripts.

Contextual fingerprints are identifiers that represent specific elements of a script and its execution con-
text. Fingerprints can be easily enriched with new elements, if needed, to enhance the proposed method’s
robustness. The list can be populated by the website’s administrators or a trusted third party. To verify our
approach, we have developed a prototype and tested it successfully against an extensive array of attacks
that were performed on more than 50 real-world vulnerable web applications. We measured the browsing
performance overhead of the proposed solution on eight websites that make heavy use of JavaScript. Our
mechanism imposed an average overhead of 11.1% on the execution time of the JavaScript engine. When
measured as part of a full browsing session, and for all tested websites, the overhead introduced by our
layer was less than 0.05%. When script elements are altered or new scripts are added on the server side,
a new fingerprint generation phase is required. To examine the temporal aspect of contextual fingerprints,
we performed a short-term and a long-term experiment based on the same websites. The former, showed
that in a short period of time (10 days), for seven of eight websites, the majority of valid fingerprints stay
the same (more than 92% on average). The latter, though, indicated that, in the long run, the number of
fingerprints that do not change is reduced. Both experiments can be seen as one of the first attempts to study
the feasibility of a whitelisting approach for the web.
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1. INTRODUCTION

For the past several years, Cross-Site Scripting (XSS) attacks have been topping the
lists of the most dangerous vulnerabilities published by the MITRE Corporation,1 Open
Web Application Security Project (OWASP),2 and other organizations. In addition, since
their first appearance, they have plagued several popular websites, including Twitter3

and Facebook,4 and have been used as a stepping stone even for taking over full
servers.5

An XSS vulnerability is manifested when a web application accepts and redisplays
data of uncertain origin without appropriate validation and/or filtering [Stuttard and
Pinto 2011]. One of the most common XSS attack vectors is JavaScript. Attackers are
motivated by the fact that JavaScript is executed as a browser component and enables
access to valuable objects within the browser. By exploiting an XSS vulnerability, an
attacker can bypass security mechanisms that are integrated in the browser, such as the
same origin policy [Saiedian and Broyle 2011] and a sandbox mechanism [Dhawan and
Ganapathy 2009]. Consider an attacker who posts data that will inject a well-hidden
script into a dynamically generated page of a vulnerable website. In this manner, the
attacker can trick a user into downloading this script from this page in order to steal the
user’s cookies or manipulate the stored information of a form for malicious purposes.
The injected script is confined by a sandboxing mechanism and conforms to the same
origin policy, but it still violates the browser’s security [De Groef et al. 2012].

Despite the numerous countermeasures that are being introduced, attackers seem to
find new ways to bypass existing defense mechanisms [Reis et al. 2007; Yu et al. 2007;
Jim et al. 2007; Nadji et al. 2006; Bisht and Venkatakrishnan 2008] by using a variety
of techniques [Weissbacher et al. 2015; Jin et al. 2014; Stock et al. 2014; Heiderich
et al. 2012; Athanasopoulos et al. 2009; Bojinov et al. 2009]. Moreover, some previous
approaches are either impractical for deployment in certain environments [Van Acker
et al. 2011; Oda et al. 2008; Phung et al. 2009; Nanda et al. 2007] or impose a non-
negligible overhead [Agten et al. 2012; Nanda et al. 2007; Stock et al. 2014]. These
are some of the main reasons why XSS prevention continues to draw the attention of
researchers and practitioners alike. We further analyze such limitations in Section 2.

To protect web users from XSS attacks based on JavaScript, we propose a training
approach where every benign script of a webpage is backed by a fingerprint. Training
techniques are based on the ideas of Denning’s original intrusion detection frame-
work [Denning 1987]. Specifically, a training mechanism learns all valid benign code
statements during a training phase. Then, only those statements will be recognized
and approved for execution during production. Figure 1 includes an activity diagram
illustrating the basic steps taken by our scheme. Our work can also be seen as an
attempt to apply application whitelisting [Beechey 2010] to the web domain.

To create a fingerprint we use a blend of elements. Some of these elements depend
on the script that is about to be executed. We chose to use specific script elements
rather than the whole script because of the dynamic nature of JavaScript (using the

1http://cwe.mitre.org/top25/.
2https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.
3http://www.theguardian.com/technology/blog/2010/sep/21/twitter-hack-explained-xss-javascript.
4https://www.facebook.com/help/757846550903291.
5https://blogs.apache.org/infra/entry/apache_org_04_09_2010.
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Fig. 1. An activity diagram incorporating the basic steps of our XSS-prevention scheme. The steps are
typical for a training scheme [Denning 1987; Weissbacher et al. 2015; Wurzinger et al. 2009; Johns et al.
2008; Bisht and Venkatakrishnan 2008]. Two of our main contributions involve (a) the way the fingerprints
are generated and (b) the diverse elements that the fingerprints contain.

whole script would be meaningful for websites that preserve only static scripts, some-
thing that rarely happens nowadays). In this way, we can apply our policies during
script interpretation/execution. Other elements are extracted from the execution con-
text and include the type of the script, the URL that triggered the execution, and more.
Furthermore, runtime checks are applied to prevent scripts from interacting with non-
legitimate domains. This is achieved by generating additional fingerprints for the do-
mains that are dynamically referenced by the scripts during execution (e.g., URLs passed
as arguments to a JavaScript function).

The combination of different elements—a process that to the best of our knowledge is
unique to our approach—is a critical aspect of our “defense-in-depth” approach because
it facilitates the prevention of a plethora of XSS attacks, as we demonstrate in this
article. Notably, by incorporating different elements we can prevent the mounting
of attacks using legitimate scripts in a malicious context, as is done in a mimicry
attack [Wagner and Soto 2002]. Note, though, that there are attacks of this kind that
can bypass our proposed countermeasure. We describe such cases in Subsection 5.1.3.

The fingerprint generation involves a transparent security layer that we call nSign.
nSign wraps the browser’s JavaScript engine and automatically collects all elements
required for generating and verifying fingerprints. All fingerprints are created on the
server side by the website’s administrators or developers with the help of nSign. Then,
the browser on the client’s side retrieves the fingerprints in a secure way. Finally,
our layer attempts to match the retrieved fingerprints with the ones generated while
browsing. Our scheme was designed based on the following principles:

(1) Efficient Script Detection. We designed our layer to deal with all scripts that
reach a browser, from every possible route. To achieve this we wrapped all entry
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points of the JavaScript engine that are used by the browser to execute the scripts
contained in or referenced by a webpage.

(2) Flexibility. Fingerprints can be enriched with new elements if needed, making
the approach more robust. In the same manner, elements can be removed from
the fingerprints to reduce overhead, but this makes the scheme more vulnerable to
attacks. For every element that we have included in our current implementation, we
provide a corresponding justification and identify what kind of attacks we prevent
by making this design choice. In a similar way, we point out the choices that could
lead to a false negative.

(3) Effectiveness. We aimed for an effective countermeasure. To evaluate this, we
tested it successfully against an extensive array of attacks that were performed
on more than 50 real-world vulnerable applications. During our tests we did not
encounter any false alarms.

(4) Unaffected Web User Experience. We aimed for a transparent validation
layer with low overhead. While browsing eight websites that make heavy use of
JavaScript (e.g., Facebook and Twitter), we found that our layer imposed an aver-
age overhead of 11.1% on the JavaScript engine. In addition, on our testbed, and
for all tested sites, the overhead introduced by our layer in the round-trip time
required for downloading a script was negligible (<0.05%).

Our scheme follows the trend of client-side protection mechanisms. As we will see
in Section 7, 17 of 26 of the current frameworks detect XSS attacks at the client side.
This is mainly because “in its core, XSS is a client-side security problem” [Stock et al.
2014]. Many client-side mechanisms, though (including ours), are not always easy to
deploy.

As we mentioned earlier, during training, all fingerprints must be created on the
server side by the website’s administrators. This implies that the effectiveness of our
approach depends on the creation of all corresponding fingerprints. However, this can be
achieved to a significant extent by the increased adoption of test-driven development
and the use of automated testing. To help administrators collect valid fingerprints
automatically we have developed a fingerprint generation module based on an existing
testing framework-see Subsection 3.3. Note also that this training could run without a
website’s cooperation. In essence, a trusted third party (e.g., Google) could create these
fingerprints for a site, and users could fetch them from that third party instead of the
website itself.

Finally, when script elements are altered or new scripts are added on the server-
side, a new training phase is required. We performed both a short-term and long-term
experiment to examine the temporal aspect of contextual fingerprints. Our results,
presented in the “Evaluation” Section (5), suggest that in a short period of time (10 days)
and for seven of eight websites, the majority of fingerprints stay the same (more than
92% on average). However, after a long period of time (more than 6 months), the number
of fingerprints that remained unchanged is considerably reduced for all the websites.
Both experiments can be seen as one of the first attempts to study the feasibility of a
whitelisting approach for the web, and, to the best of our knowledge, a study like this
has not been done before.

2. LIMITATIONS IN EXISTING APPROACHES

In this section, we identify specific limitations in the existing approaches and dis-
cuss how we address them. Such limitations involve effectiveness, deployment, and
overhead issues. We further describe existing approaches in Section 7.
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2.1. Effectiveness Issues

For a typical XSS example that involves JavaScript, consider a webpage that prints the
value of a query parameter (query) from the page’s URL as part of the page’s content
without escaping the value. Attackers can take advantage of this and inject an iframe
tag into the page to steal a user’s cookie and send it via an image request to a website
under their control (malicious.com). This could be achieved by including the following
link to the malicious website (or sending it via phishing email) and inducing the user
to click on it:

http://example.com/vulnerable.html?query=<iframe src="javascript:document.
body.innerHTML=+’<img src=\"http://malicious.com/?c=’+
encodeURIComponent(document.cookie)+’\">’"></iframe>

Policy enforcement frameworks like BrowserShield [Reis et al. 2007] do not fully cover
cases like the above. Even though they allow developers to decide if they will disable
iframe tags or not, this is impractical because such features are quite popular and
widely used. If developers choose to use them, then these frameworks cannot define
policies that restrict the behavior of third-party scripts introduced by such features.
Thus, they would be vulnerable to attacks like the above.

As we will see in Section 7, the majority of the existing approaches require the pres-
ence of a Document Object Model (DOM) tree to prevent an attack. This renders them
vulnerable to attacks like Cross-Channel Scripting (XCS) [Bojinov et al. 2009], which
is an XSS variation, or attacks that do not utilize web channels to inject JavaScript
code into the user’s browser [Barth et al. 2009; Athanasopoulos et al. 2010]. In an
XCS attack, a malicious user may utilize the Simple Network Management Protocol
(SNMP) as an attack vector. For example, there are several Network-Attached Storage
(NAS) devices that allow users to upload files via the Server Message Block (SMB)
protocol. An attacker could upload a file with a filename that contains a well-crafted
script. When a legitimate user connects over a web channel to the device to browse
its contents, the device will send through an HTTP response the list of all filenames,
including the malicious one that is going to be interpreted as a valid script by the
browser. An attack via a non-web channel could involve a malicious user that embeds
a script within a PostScript file, uploads it as a valid document, and then uses it to
trigger the attack.

Our layer detects every script that reaches the browser from every possible route,
as we show in Subsection 4.1. In this manner it can prevent attacks like the ones
described above.

Another way to bypass some of the existing approaches is to perform a mimicry
attack [Wagner and Soto 2002]. With such an attack, a malicious user can execute
legitimate scripts but not as intended by the original design of the developers. Consider
a training mechanism like XSS-GUARD [Bisht and Venkatakrishnan 2008], which
employs parse-tree validation. During training, the scheme maps legitimate scripts to
HTTP responses. During production, it retrieves for every script included in a response
its parsed tree and checks if it is one of those previously mapped to this response.
Apart from the comparison of the parsed trees, XSS-GUARD checks also for an exact
match of lexical entities. However, string literals are not compared literally, which can
lead to false negatives. For instance, observe the JavaScript code presented in Figure 2
that implements a real-world banner rotator.6 Every time the banner runs, it creates a
value (core) that depends on the current date and the length of the array that contains
the references of the various images to be displayed. Then, based on this value, it

6http://www.hotscripts.com/listing/banner-rotator/.
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Fig. 2. Real-world banner rotator script.

shows a specific image to a user by using a jQuery function. In a vulnerable website
that allows users to post data and contains this banner rotator, attackers could create
and store the same script but with references to tiny images hosted on a web server
that is maintained by them (in essence, change the values of link and image arrays).
In this way, they could retrieve the IP addresses of the users that visit the vulnerable
site. Mimicry attacks may also affect mechanisms that do not examine the script’s
location inside the web document like Browser-Enforced Embedded Policies (BEEP)
[Jim et al. 2007], Document Structure Integrity (DSI) [Nadji et al. 2006], Secure Web
Application Proxy (SWAP) [Wurzinger et al. 2009], and Cross-Site Scripting Detection
System (XSSDS) [Johns et al. 2008], as described by Athanasopoulos et al. [2009, 2010].

By associating elements coming from a script with elements coming from the exe-
cution context and by performing specific runtime checks, nSign can defend against
attacks that try to masquerade their behavior as a benign one.

Furthermore, current client-side XSS filters like Firefox’s NoScript7 plugin, Internet
Explorer’s XSS Filter8 and Chrome’s XSS Auditor [Bates et al. 2010] suffer from several
shortcomings (e.g. large number of false positives) as explained in detail by Stock et al.
[2014]. We discuss how our scheme could produce false positives in Subsection 5.2.2.

2.2. Deployment and Overhead Issues

The majority of client-side mechanisms require modifications both on the server and
at the client. Hence, it would be difficult to be adopted by both browser vendors and

7https://noscript.net/.
8http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx.
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developers, an issue that applies to our approach, too. Note, though, that there are
exceptions (e.g., Blueprint [Louw and Venkatakrishnan 2009]) that enforce policies at
the client side by embedding a library in the server’s response to the client.

Extensive modifications in the application’s source can be a reason that can render
a mechanism difficult to use. Approaches that require developers to define specific
security policies on the server side (e.g., the Content Security Policy (CSP) [Stamm et al.
2010], WebJail [Van Acker et al. 2011], JSand [Agten et al. 2012], and Same Origin
Mutual Approval (SOMA) [Oda et al. 2008]) are such examples. For instance, consider
the case of CSP, a policy enforcement approach further discussed in Section 7. In CSP,
policies are inserted via response headers or meta tags. If the developers employ this
approach and their JavaScript code involves code constructs like the eval function and
inline event handlers, then they must set policies that include the keywords unsafe-
eval and unsafe-inline, respectively. Contrary to such schemes, developers are not
required to modify the code of a website to use our approach.

Furthermore, many existing mechanisms impose a non-negligible overhead [Agten
et al. 2012; Nanda et al. 2007; Stock et al. 2014; Wurzinger et al. 2009; Louw and
Venkatakrishnan 2009; Nanda et al. 2007]. Our layer exhibits lower overhead than the
majority of previous work, as we show in Subsection 5.2.3.

3. APPROACH

Every script included in a webpage that is displayed within a browser will be processed
by the browser’s JavaScript engine. This engine is responsible for the interpretation and
ultimately execution of the client-side scripts. Our approach involves a thin validation
layer called nSign. nSign wraps all entry points of the JavaScript engine (typically, all
the API calls used by the browser to execute the scripts contained in or referenced by a
website) and can differentiate benign scripts from injected ones by associating benign
scripts with their origins and all the external URLs they reference.

nSign can detect JavaScript-based XSS attacks, ranging from the standard persis-
tent [Stuttard and Pinto 2011], non-persistent [Stuttard and Pinto 2011], or DOM-
based attacks [Stock et al. 2014] to the sophisticated attacks described in Subsection 2.1
(e.g., XCS attacks and mimicry attacks) as we describe under “Evaluation” (Section 5).
Nevertheless, there is a subset of mimicry attacks that can bypass our mechanism.
We discuss such attacks under “Security Analysis” (Subsection 5.1.3). nSign does not
prevent “scriptless” [Heiderich et al. 2012] and HTML injection attacks [Reis et al.
2007].

3.1. nSign

To prevent an attack, nSign follows the steps of Algorithm 1. First, it goes through
a fingerprint generation phase. During this phase, every benign script is mapped to
an identifier that we call a “script fingerprint” (Algorithm 1, line 2, variable f). This
fingerprint is then associated with a set of “URL fingerprints” that are generated from
the domain part of URLs extracted from the arguments passed to the script during
execution (Algorithm 1, line 3, variable u). All fingerprints are stored in an auxiliary
table (Algorithm 1, lines 5 and 6).

During production mode, the steps of nSign are exactly the same as during the
fingerprint generation mode until nSign derives the fingerprint for the script. At that
point, nSign checks if a corresponding script fingerprint exists in the aforementioned
table (Algorithm 1, line 10). If there is, then the script initially passes as benign. Then,
while executing it, it checks if the script arguments reference any unexpected URLs
(Algorithm 1, line 11). If no corresponding fingerprint is found or an unregistered URL
fingerprint is encountered, then the browser is under attack. In such a case, nSign can
halt the execution or forward an alarm to the website’s administrator.

ACM Transactions on Privacy and Security, Vol. 19, No. 1, Article 2, Publication date: July 2016.
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Fig. 3. Script and URL fingerprints. Elements in gray are extracted from the script (Algorithm 1, line 2,
function AnalyzeScript), while the other elements are coming from the execution context (Algorithm 1, line
2, function AnalyzeExecutionContext).

ALGORITHM 1: Validation Layer Algorithm
1 function SecurityLayer(script)
2 f = AnalyzeScript(script) + AnalyzeExecutionContext();
3 u[ ] = GetReferencedURLFingerprints(script);
4 if f ingerprintGenerationMode = true then
5 RegisterScriptFingerprint( f );
6 RegisterReferencedURLFingerprints( f ,u);
7 res = ExecuteScript(script);
8 else
9 res = f alse;

10 if ValidateScriptFingerprint( f ) then
11 if CheckReferencedURLFingerprints( f ,u) then
12 res = ExecuteScript(script);
13 else
14 LogPossibleAttack(script);
15 end
16 else
17 LogPossibleAttack(script);
18 end
19 end
20 return res;
21 end function

3.2. Fingerprint Generation

In this subsection we describe how script and URL fingerprints are created. For every
element that we include, we provide a corresponding justification and discuss what
kind of attacks we prevent by making this design choice and how we avoid false posi-
tives. In the same manner, we point out the choices that may lead to a false negative.
Figure 3 illustrates the fingerprints, their corresponding elements, and the way they
are associated.

3.2.1. Script Fingerprints. nSign is designed to create fingerprints for every script that
reaches the JavaScript engine of a browser. A script can be (a) embedded, which refers
to code contained within HTML <script> ...</script> tags, code included in event
handlers, and others (for more details see Subsection 4.1); (b) external, which refers
to external scripts referenced by a webpage using the src attribute of the script
tag, scripts included in external documents referenced by the page (e.g., jQuery and
AngularJS), or scripts that reach the engine through a non-web channel; and (c) fed to
eval, which refers to code that has been passed as an argument to the eval method for
evaluation and execution.
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Fig. 4. A real-world JavaScript function and its block structure, the selected keywords, and their # of
appearance. Script source: BBC.com.

When a script reaches the engine, nSign detects it and analyzes it (Algorithm 1,
line 2, function AnalyzeScript) to extract and add to the fingerprint the following key
elements:

• Block Structure. To obtain this element, nSign strips everything within the script
except for all the braces and parentheses while retaining their order (see Figure 4).

• Selected Keywords and Their # of Appearance. This element involves the aggre-
gated counts of selected JavaScript keywords, including all the reserved keywords
mentioned in the following JavaScript reference [MDN 2015], for instance, words
used to define control-flow statements (e.g., while, for), global functions (e.g. eval,
encodeURI), and fundamental objects (e.g., Function, Object).

• Static URL References. nSign collects all the static references of remote URL
addresses that may exist within a script. For example, if a script contains a static
reference to a remote URL address, the domain name part of this reference will be
included in the script fingerprint.

By including the static URL references that exist within a script, nSign can contain
an attack where a malicious user includes in the injected script an element stored on
another server (recall the example with the banner rotator script in Subsection 2.1).
Our layer would prevent such an attack since the references to the remote images
would lead to a different script fingerprint.

We chose not to include the whole script in our fingerprint for the following reason:
Consider a website or service that generates scripts dynamically for its users based on
some identity information, such as a service that generates detailed statistics about
a website’s traffic or serves advertisements. The generated scripts do not differ in
structure but the values of certain class and variables names they contain are unique
for each user—The Open Web Analytics9 (OWA) software provides this type of func-
tionality through its API.10 This customization would generate a different fingerprint
for essentially the same script and produce false alarms. However, our implementa-
tion can be easily modified to take the whole script into account when generating the
fingerprint.

9http://www.openwebanalytics.com/.
10http://wiki.openwebanalytics.com/index.php?title=Tracker.
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ALGORITHM 2: Traversing the Invocation Stack Trace That Led to the Eval Function
1 function GetStackTrace( f rame)
2 repeat
3 f rame = f rame.caller;
4 s = getFrameDetails( f rame);
5 stackTrace = stackTrace + s;
6 until f rame != bottomFrame;
7 return stackTrace;
8 end function

To create a script fingerprint, nSign also collects elements coming from the script’s
execution context (Algorithm 1, line 2, function AnalyzeExecutionContext). Such ele-
ments include the following:

◦ URL That Triggered the Script Execution. The codebase of a script may be
either the URL of the webpage containing the script (in case it is embedded) or the
URL of the external file referenced by the webpage. The domain name is the only
usable part of the script’s codebase. This is because many websites reference dynamic
pages that produce JavaScript code or generate embedded script code dynamically.
Thus the path and query segment of the URL is not necessarily static.

◦ Type of the Script. The type can be classified in the three basic categories that we
identified in the beginning of this subsection, namely (a) embedded, (b) external, and
(c) fed to eval.

By including the above elements, nSign can prevent attacks like the one presented in
the beginning of Subsection 2.1 because the malicious.com site will trigger a script
execution that will lead to non-recorded fingerprint. Nevertheless, by choosing to leave
out the path and query segment of the URL, this may lead to a false negative as we
discuss in Subsection 5.1.3. In the case of eval, nSign also includes one more element:

◦ eval Stack Trace. This is typically the invocation stack trace that led to the eval
function. To obtain this element we traverse the JavaScript call stack and retrieve
the calling entity (location and function name) of each JavaScript stack frame (see
Algorithm 2).

By incorporating the eval stack trace as a differentiating factor, nSign can detect
attacks that utilize this method. For instance, eval has been extensively used to bypass
the various client-side XSS filters [Lekies et al. 2014]. In addition, recall the technique
employed by Sammy Kamkar in his MySpace attack [Kamkar 2005]. Such an attack
would span a non-recorded fingerprint produced from (a) the script fed to eval and
(b) the fact that eval was invoked from a non-expected stack trace. After retrieving
and combining all the above elements, nSign applies a hash function to them and
generates the final script fingerprint.

3.2.2. URL Fingerprints. As we have stated earlier, one of our objectives is to associate
a script with all the URLs it references. Until now, this is partially done by extracting
the domain name part of any URL statically referenced within a script. However,
referenced URLs are not always static parts of the script code; they can be assembled
by simple string operations like concatenations of variables or can be retrieved through
the DOM. They might even be formed by processing data retrieved via Asynchronous
JavaScript and XML (AJAX) [Johnson et al. 2007] calls, or they can be contained in
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JavaScript Object Notation (JSON)-with-padding (JSONP)11 responses. Eventually,
these URLs may be used as string arguments to a defined function.

A key objective of nSign is to scan all the string arguments passed to JavaScript func-
tions for external URLs (Algorithm 1, line 3, function GetReferencedURLFingerprints).
This allows nSign to capture any hosts dynamically referenced by a script and associate
them with the fingerprint that has been generated for the script being executed. Thus, a
script fingerprint is associated to a set of URL fingerprints (Algorithm 1, line 6, function
RegisterReferencedURLFingerprints) that represent the domains that the script may
dynamically access at runtime. During runtime we can monitor the values of string
arguments passed to JavaScript functions and prevent the script from interacting with
non-legitimate domains. For instance, consider the following legitimate code:

var message = "Thank you for your visit!";
var base = "http://www.foo.com/";
var path = "thepathto/mini.gif";
var url = base + path;

Upon script execution, variable url contains a statically referencedURL that will be
included in the script fingerprint. Interestingly, by performing the following mimicry
attack:

var message = "Thank you for your visit!";
var base = "http:";
var path = "//bot.net/xss?s=http://www.foo.com";
var url = base + path;

the attacker’s script could lead to a legitimate script fingerprint, as the script’s block
structure is unaffected (no braces or parentheses have been used), there are no new
keywords, and the statically referenced URL is also included in the script. However, the
malicious URL will eventually be assembled and passed as an argument to a JavaScript
function during runtime. Therefore, such an attack would also be prevented since there
will be no matching URL fingerprint for the injected URL.

Contrary to the elements described in the previous subsection, we did not include
these references when generating script fingerprints because they do not depend on the
script’s code. They represent domains that the script may access during its execution.
Therefore, their nature is purely dynamic. These references go through the same hash-
ing algorithm used for script fingerprint generation (hereinafter, script fingerprints
and URL fingerprints will be referred to as “fingerprints”).

3.3. Fingerprint Propagation and Retrieval

To collect all valid fingerprints, the administrator of the protected web site should exe-
cute all possible scripts on the server side before the site goes in production mode. This
is, of course, a known hard problem in web application testing, but, luckily, a number of
testing frameworks have been created to overcome it [Pacheco et al. 2007; Saxena et al.
2010; Artzi et al. 2011]. We have developed a simple fingerprint generation module
based on the Crawljax testing framework [Mesbah and van Deursen 2009; Mesbah
et al. 2012]. Despite its name, Crawljax is not a web crawler but the implementation
of an approach developed to test all AJAX interfaces of a web application [Mesbah and
van Deursen 2009] and, consequently, execute all JavaScript code fragments of the
web site. Crawljax displays a high-percentage coverage and has been used in similar
occasions by researchers [Bezemer et al. 2009; Roest et al. 2010; Mesbah and Prasad
2011]. We further describe our module in Subsection 4.3.

11http://www.json-p.org/.
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Fig. 5. Fingerprint check and retrieval during a new session.

When the website is ready for deployment in the production environment, and after
all its functionality has been exercised in the fingerprint generation mode, all finger-
prints are are stored locally on the server in a database. This serves the following
purpose: exporting all valid fingerprints to a plain text file, along with a timestamp.
This file, hereafter called the “fingerprint file,” should be placed on the root folder of
the website, so nSign can retrieve it during production mode over a secure channel.

In production mode, this database serves as a local cache of valid fingerprints on
the client side, in order to avoid requesting the fingerprint file from a website every
time the user visits it. The request for the fingerprint file occurs only once per visited
website and remains cached for as long as the browser is running. The fingerprint
retrieval is illustrated in Figure 5. After retrieving the fingerprint file, the timestamp
that accompanies it is checked to make sure that the local database contains the
latest version of valid fingerprints for the given website. If the timestamp of the local
fingerprint file is older than the one on the server, then it means that a new set of
fingerprints has been generated as a result of an application modification. In this case,
the local cache is updated. While the browser is running, the set of valid fingerprints is
cached in a hashed set in memory in order to allow for efficient fingerprint validation.
Note that the location where the fingerprints are cached is an implementation detail;
we could use the browser’s cache.

However, the fact that the fingerprint file is requested once per visited website and as
the browser is running could lead to a false-positive alert. Specifically, if the fingerprint
file is updated at the server side, the clients that are currently visiting the site will
have an outdated fingerprint file. Hence, nSign may generate a fingerprint that will
not pass as legitimate. To avoid this, our method takes one more step before raising
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an alarm: it checks again whether there is an updated fingerprint file on the server.
If there is, nSign checks again if the fingerprint exists in the updated fingerprint file
before alerting the user (see Figure 5).

4. IMPLEMENTATION

We have implemented our layer as a module integrated in the Mozilla SpiderMonkey
JavaScript engine.12 In particular, we instrumented the SpiderMonkey API methods
that are used by the browser as entry points to the engine, by wrapping the implemen-
tation of each one so it goes through our validation layer. Other mechanisms employed
by the engine such as Just In Time (JIT) compilation or caching of compiled scripts
are neither affected by nor affect our layer, since it operates on an intermediate level
between the API and core of the engine.

4.1. Intercepting JavaScript

The entry points of a JavaScript engine are the API calls used by the browser to execute
the scripts contained in or referenced by a webpage. In order to improve performance,
applications that use a JavaScript engine try to minimize script compilation time by
holding references to compiled scripts and invoking them multiple times with different
argument values. We therefore needed to instrument API methods that either take as
input a script as a string or execute a script that has already been compiled by the
engine. JavaScript is also used internally by Firefox in order to implement various
functions mostly related to the user interface. To avoid processing such scripts, we
devised a mechanism for filtering out “internal” calls to SpiderMonkey by examining
the security principals and the script origin associated with each API call. By identi-
fying all possible entry points, we managed to detect all scripts that reach the engine
including scripts that may reach the engine through channels like the document.write
method and documents loaded within iframes. Although we identified the entry point
of every JavaScript execution, there is a case that must be handled with special care:
The code fed as an argument to the eval function may be stripped out during code
analysis. Therefore, we also wrapped the eval function implementation in order to
perform code analysis on its input.

A potential source of false alarm could occur if we did not consider the JSON data
included in scripts used by various web applications. However, SpiderMonkey distin-
guishes internally all JSON data coming from JavaScript code. This came in handy as a
shortcut because our layer does not intend to generate fingerprints for these kinds of
data. Even if an attacker manages to pass a script through JSON data (as described
by Stock et al. [2014]), the script will finally reach the engine in order to be executed
and a script fingerprint will be generated. As this fingerprint will not exist in the
fingerprint file, the malicious script execution will be blocked.

Although the word JavaScript may bring to mind features such as DOM objects,
AJAX calls (XMLHttpRequest objects), and event handlers like onclick, these features
are not part of SpiderMonkey or most JavaScript engines. They are typically provided
by the applications using the engine by exposing some of their objects and functions
to JavaScript code.13 For instance, the implementation of XMLHttpRequest in Mozilla
Firefox is located in the nsXMLHttpRequest class. However, we were able to intercept
XMLHttpRequests initiated by scripts, because SpiderMonkey uses an API method to
call back to a nsXMLHttpRequest object by wrapping references to the corresponding
native functions provided by Firefox in JSObject structures. In a similar manner, we
were able to intercept the execution of scripts that are triggered by DOM event handlers.

12https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.
13https://developer.mozilla.org/en-US/docs/SpiderMonkey/JSAPI_User_Guide.
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Fig. 6. JavaScript execution stack and stack frame elements.

4.2. Extracting Elements

The processing of document and script locations is performed using a custom parser.
The line in which a script is located within a document is passed by the browser to the
API methods as a parameter, so by examining the location of a script (codebase and line
number) we can distinguish between internal and external scripts. The same parser
is used to extract the static references to external resources contained in a script. In
particular, by using regular expresions, the parser extracts the various parts that the
URL consists of, such as the protocol (e.g., HTTP), authority (domain name and port),
path, and query.

If the JavaScript code is a script fed to eval, then we also retrieve the JavaScript
stack trace that led to the eval function call. To accomplish that, we utilize the data
structures that SpiderMonkey uses to monitor the execution of a script, most notably
the JSContext and JSStackFrame. The former contains the execution stack, while the
later is a structure representing a frame of the JavaScript virtual machine stack. A
frame contains information regarding the method being executed, the program counter,
the formal and actual arguments, the local store associated with each call, and the
script being executed (function name if available, source location, etc.). It also contains
a pointer to the next frame on the stack, which allows us to traverse the execution
stack by iterating through the frames and collecting the information we need for each
one. This information includes the location of the script being executed (domain name
part of the URL of the document containing the script) and the name of the JavaScript
function if available or “anonymous function” otherwise. This information is appended
to the stripped down form of the source code being passed to the eval method and is
used to generate the final script fingerprint. The structure of the stack and the stack
frames are illustrated in Figure 6. The final script fingerprint occurs by combining
the above elements with the aggregated counts of the JavaScript keywords contained
in the script and the script’s block structure and applying an SHA1 hash function on
them.

As we described in Section 3, we needed to associate the domain part of URLs that
can be referenced by a script at runtime with the corresponding script fingerprint. To
identify such URLs, we analyze the string type object values in the heap space of the
engine. In particular, the execution of any compiled script eventually goes through the
function RunScript. Within this function, we have access to all the argument values
that are passed to any compiled JavaScript function. RunScript performs some sanity
checks and then either invokes the JavaScript interpreter or the JIT compiler. At this
point, we extract all the URLs that are contained in string arguments. If any URLs are
found, then we retrieve the domain part of each one and apply the same hash function
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to it, thus generating a URL fingerprint. Note that this process is only performed when
a compiled script is executed.

4.3. Fingerprint Management

As we discussed in Subsection 3.3, to collect valid fingeprints automatically, we have
developed a fingerprint generation module based on the Crawljax [Mesbah and van
Deursen 2009; Mesbah et al. 2012] testing framework. Crawljax provides an interface
that allows the tester to configure the depth of the testing (practically the depth that
the web site crawler will reach during the test) and the browser to be used. By using
the browser with our modified JavaScript engine, the administrator can automatically
retrieve all fingerprints without having to manually browse the whole site and execute
its functionality. We have evaluated the efficacy of our fingerprint generation module
and we elaborate on our results in Subsection 5.2.1.

As a back-end for storing the fingerprints generated by nSign, we employed an SQLite
database.14 During training the database is used to store the fingerprints that will then
be exported into the fingerprint file. In production mode, the database serves as a local
cache of fingerprints for the websites that the user has visited in the current session.
This helps us avoid multiple requests for the fingerprint file on each visited web site.
To aid evaluation in our prototype implementation, we did not fully implement the
mechanism for the retrieval of the fingerprints via a secure channel from within nSign
but rather used a mock-up proxy that retrieves the fingerprint files from either local
store or using an external application to fetch fingerprint files over a secure channel.

5. EVALUATION

We have evaluated our framework in terms of effectiveness, operation cost, and main-
tenance cost.

5.1. Effectiveness

To evaluate the effectiveness of nSign, we searched for web applications that had a
record of being vulnerable to XSS attacks. Our experiment involved vulnerable appli-
cations that were installed and attacked locally and real-world XSS exploits hosted by
xssed.com.15

5.1.1. Laboratory Tests. For our laboratory tests, we downloaded the vulnerable ver-
sions of five well-known OSS projects, including Joomla16 and phpMyFAQ.17 First, we
applied our fingerprint generation module to the applications. Then, we switched to
production mode and performed various attacks based on the vulnerability type of ev-
ery application. Defects like the absence of proper input sanitization and the improper
verification of HTTP requests allowed us to perform redirect and cookie stealing at-
tacks. For example, in phpMyFAQ, URLs are not sanitized correctly, making it possible
to inject JavaScript code to steal the user’s cookies. Table I shows, for each web appli-
cation, its vulnerable version and the attack type that we performed. All attacks were
successfully prevented without encountering any false alarms.

5.1.2. Prevention of Real-World Attacks. We selected 50 real-world vulnerable applications
taken directly from the vulnerability archive hosted by XSSed.com. This archive has
been previously used for evaluation in other articles [Athanasopoulos et al. 2010; Nadji
et al. 2006]. Initially, we searched for XSS attacks that utilized JavaScript. Then we

14http://www.sqlite.org/.
15www.xssed.com.
16www.joomla.org/.
17www.phpmyfaq.de/.
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Table I. Vulnerable Web Applications Used
in Our Laboratory Tests

Application Version Attack Type
Joomla 1.5.20 Cookie Stealing
phpMyFAQ 2.6.8 Cookie Stealing
Pluck 4.6.3 Redirect
JCart 1.1 Redirect
TikiWiki 1.9.8.1 Cookie Stealing

checked if their status was unfixed, which means that the site administrators have not
fixed the existing defect yet, and the site is vulnerable to attacks even if it is online. The
vulnerable webpages included top-ranking sites like eBay.com and nydailynews.com.
The complete list of the sites can be found on Appendix A. Based on the existing exam-
ples that XSSed.com provides, we attempted a variety of attacks, including DOM-based
attacks and attacks that utilized the eval function and iframe tags. nSign recognized
and blocked all of the attacks, without producing any false alarms.

5.1.3. Security Analysis. All the attacks that we performed in our experiments led to
fingerprints that were not generated during the training phase, and, hence, they were
prevented by our mechanism. Each case had different characteristics and was pre-
vented for different reasons. In this subsection, we show how the various attacks were
stopped by nSign. We also discuss the possibility of False-Negative (FN) and False-
Positive (FP) errors.

Attack Prevention. Cookie stealing and redirection attacks produced unrecorded fin-
gerprints because of (a) the injected script and (b) the URLs that were statically ref-
erenced within the script. The attacks that utilize iframe tags (described in Subsec-
tion 2.1) were blocked for the same reasons. In addition, we performed a redirection
attack by assembling a URL in the way we presented in Subsection 3.2.2. In this case,
an unrecorded URL fingerprint was a factor, too. eval-based attacks were detected
because they produced non-recorded fingerprints coming from (a) the script fed to the
function, (b) its type, and (c) the unexpected invocation stack trace. We have also in-
corporated the banner-rotator mentioned in Subsection 2.1 into one of our laboratory
tests. In this way, we managed to perform a mimicry attack like the one described
in the same subsection. nSign successfully prevented the attack because the different
URLs that were referenced within the script led to the generation of an unrecorded
fingerprint.

False Negatives and Mitigation. A false negative would occur by performing a
mimicry attack that would cause the execution of a script that is otherwise legitimate
in a different context. For example, consider a vulnerable website that is structured in
a way that contains a public facing part for visitors and a private part that is supposed
to be used by authenticated users. In the private part, assume that there is a script
that can be used to delete the contacts of a user based on a variable stored in the user’s
cookies. If an attacker manages to inject the exact same script in the public part of the
site, and the website does not perform authorization checks when the corresponding
request is performed, then the contacts of a casual user of this website would be deleted
since the generated fingerprint will be valid. Such an attack is similar to the “Forcing
Logout” attack presented in Athanasopoulos et al. [2009].

However, this attack can be prevented by taking into account the entire URL path
from which a script originated and is referenced (recall our design choice at the end
of Subsection 3.2.1). Note that this is based on the assumption that the public and
private parts of the website share the same domain name but have different path and
segment locations. If the domain name differed, then the attack would not work in the
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first place, because the different domain name would lead to a different fingerprint.
Nevertheless, including the entire URL path as a fingerprint element would lead to
the increase of the number of fingerprints as we show in Subsection 5.3.

Another false negative could occur in the context of a social media website, such as
Facebook. Consider an attacker who could craft a script that includes the same key-
words and has the same block structure with the one used by the website when users
share a post on their wall. If the attacker manages to share a post that incorporates
this script on a user’s wall, then this script would run every time another user sees
the post without the intervention of nSign. This mimicry attack, though, would work
only if the benign script is an embedded script. If it is an external script, then the
fingerprint would differ (recall that we include the type of each script as an element
of the fingerprint). In the same context, consider an embedded script that invokes a
function defined in an external one. Suppose that this function has the following sig-
nature: sendMessage(<user>, <message>), and is used to send a message to another
user on behalf of the currently logged in user. By leveraging a benign call to a function
with the same signature in an embedded script, an attacker could invoke the external
script function with different arguments and potentially spam other users.

False Positives. There are two main reasons behind the false positives that may be
produced by our scheme. The first involves an incomplete training phase. Nevertheless,
by using our fingerprint generation module (see Subsections 3.3 and 4.3) we have
achieved a high percentage of coverage in all the above cases. This was exemplified by
the fact that we did not encounter any false positives during our tests. A false positive
may also occur if scripts are modified or new scripts are added on the server side. In
this case, a training phase should take place again. We further discuss this issue in
Subsection 5.2.2.

5.2. Fingerprint Maintenance and Performance

To evaluate the runtime performance of our prototype and provide details on the au-
tomation of the fingerprint collection, we performed two experiments. In the first one,
we evaluated the effectiveness of the proposed fingerprint collection scheme on the
server side and examined the temporal aspect of fingerprints. In the second one, we
evaluated the performance of our solution on the client side. In both cases, we used a
build of Firefox (v32.0.3). We ran our experiments against eight high-profile websites.
Both experiments were run on a client with a quad core Intel i7 processor with 8GB of
RAM running Linux (64-bit Ubuntu 15.02).

5.2.1. Fingerprint Generation with Crawljax. We configured Crawljax to automatically fol-
low the links from the site’s homepage up to three levels deep in the site’s page hi-
erarchy. The number of fingerprints captured for each site, along with the total time
required by Crawljax to crawl the site (including network latency), are reported in
Table II. The results show that the total number of fingerprints is small even for
very large websites containing thousands of pages. Even if a full website scan is re-
quired, our measurements indicate that the fingerprint collection is feasible, and it
can be automated via a testing suite like Crawljax. After generating the fingerprints,
we extensively browsed the websites. While browsing, we did not encounter any false
positives, and nSign did not interfere with the browser’s operation in any way.

5.2.2. Fingerprint Change over Time and Potential False Positives. When script elements are
altered or new scripts are added on the server side, a fingerprint generation phase
should take place again, otherwise false positives will occur. To examine the temporal
aspect of contextual fingerprints we performed two experiments.
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Table II. Crawljax Execution Statistics and the Temporal Aspect of Fingerprints (Long-Term Experiment).
Time Is Measured in Minutes and Seconds

T1 T1 + 6 Months # of unchanged
Domain Fingerprints Crawljax Time Fingerprints Crawljax Time fingerprints

gmail.com 511 48:23 534 49:15 206 (40.31%)
ebay.com 253 37:10 312 40:41 133 (52.56%)
amazon.com 1404 62:04 1467 66:45 575 (40.59%)
twitter.com 1465 34:06 1504 37:12 611 (41.7%)
facebook.com 3108 45:36 3511 47:29 456 (14.67%)
wikipedia.org 343 62:34 378 65:06 211 (61.51%)
cnn.com 537 54:53 511 53:33 282 (52.51%)
bbc.co.uk 853 41:20 696 36:53 147 (17.23%)

Fig. 7. Short-term experiment on the temporal aspect of fingerprints. Examining how many fingerprints
(%) remain the same for every 2 days. The arithmetic mean of each website can be seen on top of the graph,
right next to the website’s name.

Short-Term Experiment. Every 2 days, we generated the fingerprints for a specified
set of pages coming from each website, using our fingerprint generation module. This
was done over a period of 10 days. Each time we collected the fingerprints, we checked
them against those generated two days earlier and identified the ones that were the
same. Our results can be seen in Figure 7. Observe that in most cases the majority of
the fingerprints remained unchanged. For instance, if we take a closer look on BBC’s
transition from day 0 to day 2, we see that the 95.86% of the fingerprints remained un-
changed. Specifically, we found nine new fingerprints. There are three possible reasons
behind this: (a) the introduction of new scripts, (b) the modification of existing ones,
and (c) interactions with new, dynamically referenced URLs (which led to unrecorded
URL fingerprints; recall that URL fingerprints correspond to different URLs that are
passed as arguments to the various functions). During our experiments, though, we
were not aware of all the benign domains that could interact with each website in this
way. If we did, then the number of unchanged fingerprints could be higher because we
would be able to check if we have all the corresponding URL fingerprints. Furthermore,
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URL fingerprints seem to be the main reason behind the different behavior of Amazon.
Note that the developers of a web application may choose not to use the URLs that are
passed as arguments to the various functions as elements. In this case, the number of
unchanged fingerprints would increase and the need for retraining would decrease.

Another interesting observation involves the massive change in the fingerprints
of Twitter in the sixth day. A change like this could suggest scheduled updates in
many scripts and/or the introduction of new ones. This behavior is consistent with our
expectations and further promotes the idea of regenerating the fingerprint set when
changes are made on the server side. Overall, our results indicate that nSign could be
used by dynamic websites.

Long-Term Experiment. To check how fingerprints change over a long period of time,
we did the same experiment presented in Subsection 5.2.1, 6 months later. In Table II,
we illustrate how many fingerprints stayed the same after 6 months. Observe that in
all cases there are unchanged fingerprints, while there are many new ones that have
been introduced. This could involve software updates, changes in advertising, and in-
teractions with new URLs. Notably, Wikipedia holds a high percentage of unchanged
fingerprints—61.51%. In the case of Facebook and BBC, though, the number of un-
changed fingerprints is quite low: 14.67% and 17.23%, respectively. This is reasonable
because, during this period, the user interfaces of both websites went through numer-
ous changes. Besides, such popular websites are expected to go through significant
changes more often than others.

5.2.3. Computational Overhead. To measure the overhead of fingerprint generation, we
instrumented both SpiderMonkey’s JavaScript parser and interpreter and our finger-
print generation code with high precision time counters. For SpiderMonkey, we mea-
sured the time required to parse the input code, as well as the execution time, whether
the script was interpreted or compiled and executed. The total time required to execute
our code was broken down into four operations as follows: (a) code formatting, stripping
and basic extraction of elements, (b) lookup of a fingerprint from the persistent store,
(c) traversal of the execution stack (only applicable in the case of eval calls), and (d)
scanning of function arguments for URLs.

Using the instrumented version of SpiderMonkey, we used Firefox to visit the afore-
mentioned list of websites in order to trigger fingerprint generation. For websites whose
home page requires authentication (e.g., Gmail), we logged in with the benchmarker’s
account before benchmarking; the login information persisted across benchmark runs.
Each run consisted of starting a saved Firefox session with all websites opened as tabs.
Measuring performance at the microsecond level in complex systems in non-isolated
environments can introduce a high degree of variance in the obtained results [Georges
et al. 2007]. In our case, sources that added to variance are background operating sys-
tem services and system interrupts required for processing user and network events.
Consequently, and in order to obtain statistically significant results, we run the ex-
periments 31 times. Table III indicates that the bulk time is spent on the generation
of script fingerprints; upon further investigation, we concluded that the majority of
time is spent on script analysis. Note that we browsed selected pages for each web-
site. Hence, the fact that we did not encounter the eval facility during our tests does
not imply that the method is not used by the webpage. However, even when we did
encounter it, the time required to generate stack traces was negligible. Furthermore,
most compiled scripts invoked either had no string arguments or these arguments did
not contain URLs, making the argument parsing overhead minimal in most cases.

Depending on the website design, the number of produced fingerprints can be quite
large; even so, since our system only stores an SHA1 hash for each fingerprint, the
space requirements are trivial.
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Table III. Performance of System Prototype. Time Is Measured in μs

nSign Time
Domain Analysis1 Retrieval2 Stack3 Args4 Total SpiderMonkey5 Overhead (%)

gmail.com 154 13 0 6 172 1182 14.5
ebay.com 381 150 0 0 531 9269 5.7
amazon.com 287 47 0 27 361 3860 9.3
twitter.com 257 451 0 0 708 3120 22.6
facebook.com 1782 453 15 0 2235 9933 22.5
wikipedia.org 218 49 0 0 268 28,030 0.9
cnn.com 265 181 22 0 446 93,148 0.4
bbc.co.uk 64 21 0 3 88 659 13.3
1Code stripping and element extraction.
2Fingerprint retrieval from the fingerprint file.
3Stack traversal.
4URL extraction from string arguments.
5SpiderMonkey’s execution time without our functionality.

Compared to the time required by SpiderMonkey to parse each page’s scripts, our
layer appears to impose an average overhead of 11.1% (note that this overhead is
produced by a proof-of-concept with no optimizations). In practical terms, however,
this overhead is smaller or comparable to the speed-ups offered by modern JavaScript
engines in recent years and, in most cases, is not perceivable by end users, as their
experience is largely dominated by network latency and page rendering. On our test
machine, and for all tested sites, the round-trip time required for downloading a script
was in the range of seconds, which makes our layer’s overhead negligible (less than
0.05%). The results indicate that the described solution can be of practical value as the
overhead it imposes is minimal both in time and in space (a few kilobytes) terms, and
as a result it does not affect the user’s experience.

5.3. Tradeoffs

Our approach’s design aims to provide flexibility regarding the inclusion and exclu-
sion of elements from script fingerprints. For instance, the semicolons contained in the
script could be easily added as a characteristic to the script fingerprint. This renders
mimicry attacks that add statements more difficult to perform, because the number of
script commands must remain unaltered, thus imposing a strict limit on the attacker
and providing extra robustness (mimicry attacks that remove statements can simply
pad the script with additional semicolons). This though, comes with a tradeoff between
effectiveness and computational overhead (the time required to analyze the code in-
creases). Similarly, by checking the URLs that are dynamically referenced by a script,
the computational overhead grows. However, without this element, our approach would
become susceptible to an attack like the one presented in Subsection 3.2.2.

As we mentioned in Subsection 5.1.3, we can avoid a class of potential false nega-
tives by including the URL path as an element (instead of having the domain name
only). Nevertheless, this may lead to fingerprint coverage and maintenance issues. The
flexibility of our scheme allowed us to perform an experiment to highlight the afore-
mentioned tradeoff. The experiment involves the generation of fingerprints for the
Imgur online image sharing community.18 We have selected this website as the sub-
ject of our experiment because it follows modern web development practices, like many
other social networking websites (e.g., Facebook). Specifically, Imgur uses URL patterns

18http://imgur.com/.
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Fig. 8. Adding the entire URL path as a fingerprint element. For a given website (imgur.com), we examined
how the number of the fingerprints changes during the training phase with and without the path. Black bars
show the number of fingerprints that nSign generates when the domain name of the URL is incorporated as
an element. Grey bars illustrate the number of fingerprints generated when the whole URL path is included.

(routes) for its pages that adhere to the REST style conventions [Richardson and Ruby
2007]. For instance, the route for an image gallery is as follows: /gallery/{galleryID}.

The experiment was performed in three steps. For each step, we changed our scheme
in order to measure the fingerprints with and without the URL path that triggered the
execution of each script. During the first step we visited the website’s main page and
consecutively the first 10 images that appear in the first page, as well as the profile page
for the user that posted each one. After generating the fingerprints, we performed the
second step, in which we visited the next five images and the corresponding profiles. For
the third and last step we did the same thing for the next five images/profiles. Figure 8,
illustrates the results of the experiment. In black, we see the number of fingerprints
when only the domain name is included as a fingerprint element (imgur.com). In grey,
we observe the number of fingerprints when the whole URL path is included (e.g.,
imgur.com/gallery/L2SPQwQ).

As our results indicate, including the entire URL path as a fingerprint element leads
at best to a linear increase of the number of fingerprints for sites built with such a
structure (because similar paths that differ only by one or more segments, must be
associated with the same scripts). This behavior would make the training phase more
difficult and lead to potential false positives. Hence, apart from the tradeoff between
efficiency and overhead, we observe that there can be a tradeoff between false positives
and negatives.

6. DISCUSSION

Our scheme can be used together with other training mechanisms. ZigZag [Weissbacher
et al. 2015] is one of those cases. In particular, ZigZag prevents attacks that exploit
client-side validation vulnerabilities. To do so, it generates models that depict how
client-side components interact. To work as intented, ZigZag should be installed on the
browser side, together with “complementary defenses against XSS-based code injection
attacks.” Also, when a script is modified on the server side, the script-instrumentation
that is needed to create the models must take place again. Hence, both mechanisms
could share the same training phase.
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In order to simplify the fingerprint management and propagation, the client-side
processing could be simplified by removing the fingerprint caching mechanism. The
fingerprints that are valid for a given page could be sent over to the client along
the response using standard HTTP headers. The communication overhead should be
minimal, since a page is associated to a limited number of fingerprints. As a result, the
size of the headers would not increase significantly. However, such an approach would
require modifications on the server side, so the valid fingerprints will be sent to the
client embedded in the response headers.

In recent years the web application development practice has displayed an increasing
trend towards the use of common JavaScript libraries like jQuery. This provides an
opportunity to minimize the number of fingerprints that need to be generated for a
website by whitelisting the fingerprints of popular libraries. In essence, this technique
not only leads to a smaller fingerprint set but also minimizes the need for re-generating
fingerprints for a web application if a library it depends on is updated. Web applications
are typically built and tested against a specific version of a third-party library, thus
no re-syncing is required for every new release of a library. If a developer chooses to
use a new version of a library, then the full set of fingerprints needs to be generated
anyway, but most popular JavaScript libraries have a release cycle of 6 months or
more.

This type of whitelisting is becoming increasingly meaningful given that web devel-
opers nowadays link directly to the latest version of libraries hosted on Content Dis-
tribution Networks (CDNs) [Nikiforakis et al. 2012], instead of bundling local copies
with their application. Direct linking provides the advantage that no manual updating
of libraries is required and may possibly protect against vulnerabilities contained in
outdated library versions. In addition, CDNs typically offer higher performance and
availability for delivering libraries to the end user. Such a whitelisting approach could
allow for false positives in the following scenario: Consider a web application that links
to the latest version of a library that contains calls to the eval method. The web appli-
cation itself does not use eval directly but relies on some API method of the library that
does. If the library is updated and the aforementioned method is changed so eval is
called through a different path, then a different stack trace will be generated, causing a
false positive. However, the effect of this shortcoming can be minified by employing the
whitelisting technique only for libraries that are not directly or indirectly dependent
on eval.

We have also experimented with our mechanism to examine the impact of denying
the execution of the scripts without a corresponding fingerprint. The results of such
an event may vary, due to possible cascading effects. For example, consider a scenario
where a web page is using the jQuery library, and the developers update the version
of jQuery without performing the training phase. In this case, the functionality of
the page—and possibly its rendering—can be severely affected. Apart from this case,
though, we did not observe any other significant effect during our testing. For instance,
if the banner rotator script mentioned in Subsection 2.1 has no corresponding finger-
print, the webpage is still functional but with the banner missing.

Finally, note that ECMAScript 5 provides a mode (“strict mode”) where, when en-
abled, eval cannot introduce new variables into the surrounding scope. This could
contain eval-driven attacks, but it cannot detect mimicry and XCS attacks.

7. RELATED WORK

There are four basic approaches to dynamically detect XSS attacks, namely policy en-
forcement, Instruction Set Randomization (ISR), taint tracking, and training. When
using a framework that implements policy enforcement, developers must define spe-
cific security policies on the server side. Policies can be expressed through JavaScript
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extensions, pattern matching, or syntax-specific settings. The policies are then enforced
either in the user’s browser at runtime or on a server-side proxy that intercepts server
responses. Some frameworks define policies based on information and features pro-
vided by the DOM of a web page. Specifically, developers must place all benign scripts
inside HTML elements like div. The web browser parses the DOM tree and executes
scripts only when they are contained in such elements. All other scripts are treated
according to the policies defined on the server. Frameworks that support this function-
ality include BEEP [Jim et al. 2007] and DSI [Nadji et al. 2006]. Both mechanisms
suffer from effectiveness issues, as indicated in Subsection 2.1.

Another policy enforcement approach introduces policies directly either in HTML or
JavaScript code to confine their behavior. BrowserShield [Reis et al. 2007] acts as a
proxy on the server side to parse the HTML of server responses and identify scripts.
Then, it rewrites them into safe equivalents and protects the web user from exploits
that are based on reported browser vulnerabilities. ConScript [Meyerovich and Livshits
2010] and CoreScript [Yu et al. 2007] extend JavaScript with new primitive functions
that provide safe methods to protect potentially vulnerable JavaScript functions. In
most cases, policy enforcement takes place at client side in the JavaScript engine of
the browser. As we mentioned in Subsection 2.1, the above frameworks are vulnerable
to attacks that employ either script inclusion or iframe tags.

The framework by Phung et al. [2009], WebJail [Van Acker et al. 2011], JSand [Agten
et al. 2012], TreeHouse [Ingram and Walfish 2012], and SOMA [Oda et al. 2008] are five
schemes that, contrary to the previous ones, can actually detect attacks that employ
script inclusion or iframe tags. To achieve this, SOMA requires site administrators to
specify legitimate, external domains for sending or receiving information in order to
approve interactions between them and the protected website. WebJail contains the
functionality of third-party scripts by introducing a web component integrator that
restricts the access that these scripts may have to either the data or the functionality
of other components. JSand and the framework by Phung et al. operates in a similar
way. TreeHouse provides to the developers frameworks that contain JavaScript in ways
similar to sandboxing and virtualization. Blueprint [Louw and Venkatakrishnan 2009]
is a policy enforcement framework that uses parsed trees to detect XSS attacks. To
guarantee that untrusted content is not executed, Blueprint generates at the server
side a parsed tree from untrusted HTML to ensure that it does not contain any dynamic
content. Then, the parsed tree is transfered to the document generator of the browser,
where untrusted browser parsing behavior is ruled out.

A policy enforcement technique developed by Mozilla, called CSP [Stamm et al. 2010;
Fazzini et al. 2015] is currently supported by the majority of browsers to prevent various
types of attacks, including XSS attacks. To eliminate such attacks, website developers
can specify which domains the browser should treat as valid sources of a script and
which it should not. Then, the browser will only execute scripts that exist in source
files from whitelisted domains. Note that if a CSP-based application involves embedded
scripts, developers must utilize the nonce concept. This is an unpredictable, random
value indicated in the script-src directive that, in turn, is applied as a nonce attribute
to <script> elements. As a result, only those elements that have the correct nonce
will execute. Even if an attacker is able to inject markup into the page, the attack will
be prevented by the attacker’s inability to guess the nonce value. However, attackers
may still bypass this feature and invoke a script from a non-whitelisted source. To
do so, their injected code must be crafted in a way that the nonce is handled by the
browser as an attribute of the payload.19 Notably, this attack would be prevented by

19http://blog.innerht.ml/csp-2015/.
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our mechanism because the injected script and the non-whitelisted URL that triggered
its execution would lead to non-recorded fingerprints. CSP could be used along with
our mechanism. For instance, developers could set policies only for the domains that
should be treated as valid sources of scripts. Then, they could utilize nSign to guard
embedded scripts against XSS attacks. Note that, in this case, URLs should not be
included as fingerprint elements.

AutoCSP [Fazzini et al. 2015] and deDacota [Doupé et al. 2013] are two schemes
that are based on CSP. In particular, AutoCSP is a mechanism that can automatically
retrofit CSP to web applications and deDacota [Doupé et al. 2013] enforces code and
data separation at runtime through the CSP mechanism. Google Caja20 is another
policy enforcement approach provided by Google. It is based on the object-capability
security model [Miller 2006], and it aims to control what the embedded third-party
code can do with user data.

ISR is a method that has been applied to counter different kinds of application at-
tacks [Keromytis 2009]. In the XSS prevention context, this approach works as follows:
Initially, the trusted code of a webpage can be transformed to a random representation
using a simple function such as XOR. Before being sent to the client, or being processed
by the browser, the legitimate code is transformed back to its original form, while any
additional injected code will be transformed into junk code. Variations of this approach
include Noncespaces [Gundy and Chen 2009] and xJS [Athanasopoulos et al. 2010],
which randomize the instruction set of HTML and JavaScript, respectively. Contrary
to xJS, in Noncespaces, administrators must set specific policies in a manner similar
to a firewall configuration language. SMask [Johns and Beyerlein 2007] is another
framework that was inspired by ISR. To detect XSS attacks, it searches for HTML
and JavaScript keywords within the application’s legitimate code. This is done before
the processing of any HTTP request. When a keyword is found, it adds a token to it,
resulting in a “code mask.” Then, before sending the resulting HTML data to the user,
the framework searches the data. Since all legitimate code has been “masked,” the
injected code can be identified.

Notably, Sovarel et al. [2005] have examined thoroughly the effectiveness of ISR and
showed that an attacker may be able to circumvent it by determining the randomization
key. Their results indicate that applying ISR in a way that provides a certain degree of
security against a motivated attacker is more difficult than previously thought.

A taint tracking scheme, marks untrusted (“tainted”) data and traces its propagation
through the program. Context-Sensitive String Evaluation (CSSE) [Pietraszek and
Berghe 2006] associates tainted data with specific metadata that includes the origins
of the tainted data and its propagation within the application. When tainted data reach
a potentially risky operation, CSSE performs syntactic checks based on its metadata.
PHP Aspis [Papagiannis et al. 2011] works in a similar way. To obtain metadata, it
takes advantage of the PHP array data structure. Finally, WASC [Nanda et al. 2007]
analyzes HTML responses to check if there is any tainted data that contain scripts. A
recent study [Naderi et al. 2014] showed that there are ways to circumvent schemes
like the above. Vogt et al. [2007] have developed a tainting scheme that follows a
different approach. In contrast to the above methods, their technique tracks sensitive
information at the client side. The scheme counters XSS attacks by ensuring that a
script can send sensitive user data only to the site from which it came from. Stock
et al. [2014] have developed a mechanism that also operates in the browser and focuses
on the prevention of DOM-based XSS attacks. To do so, it employs a taint-enhanced
JavaScript engine that tracks the flow of attacker-controlled data. To detect potential

20https://code.google.com/p/google-caja/.
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attacks, it uses HTML and JavaScript parsers that can identify the generation of
code coming from tainted data. Finally, SCRIPTGARD [Saxena et al. 2011] employs
positive taint tracking on the server side to detect sanitization errors that may lead to
XSS attacks. Note that, in the context of positive data flow tracking, the tagged data
are considered to be legitimate.

An issue that involves taint-tracking schemes is the difficulty of maintaining accu-
rate taint information [Kang et al. 2011] (e.g., handling implicit flows). In such cases,
certain, tainted inputs can escape the tracking mechanism. Keeping track of such in-
put may be impractical not only because of the various technical difficulties but also
because it would raise false alarms.

Apart from nSign and XSS-GUARD [Bisht and Venkatakrishnan 2008] (described in
Subsection 2.1), training approaches also include mechanisms like SWAP [Wurzinger
et al. 2009] and XSSDS [Johns et al. 2008]. In Subsection 2.1 we presented in detail an
attack to bypass XSS-GUARD. Recall that the attack involved a script that references
external URLs. nSign can prevent such an attack because the referenced URLs would
lead to an unrecorded fingerprint. Note that referenced URLs are not always static
parts of the script code: They can be assembled in numerous ways by attackers as we
showed in Subsection 3.2.2.

SWAP creates a unique identifier for every benign script on the server. Then, a
JavaScript detection component placed in a web proxy searches for injected scripts
with no corresponding identifier in the server’s responses. If no injected scripts are
found, then the proxy forwards the request to the client. SWAP uses the whole benign
script to create an identifier during the training phase. However, this is meaningful for
websites that preserve only static scripts, something that rarely happens nowadays.
nSign uses specific script elements rather than the whole script. In this way, it can apply
its policies during script interpretation/execution, thus supporting dynamic scripts.

The authors of XSSDS have implemented a similar mechanism that also supports
dynamic and external scripts. Specifically, during the training phase, they build a
list of all benign scripts. For external scripts, they keep a whitelist of all the valid
domain names that contain scripts used by the application. A limitation of the XSSDS
mechanism (as the authors themselves point out in their article) is that stored XSS
attacks are not always detectable. This is because the mechanism relies on a direct
comparison of incoming HTTP parameters and outgoing HTML, something that does
not apply to our scheme. Specifically, nSign generates fingerprints for all scripts because
it wraps the JavaScript engine of the browser. Thus, it would generate an unrecorded
fingerprint for the script involved in the corresponding stored XSS attack, and the
attack would fail.

Table IV compares the various XSS countermeasures in terms of false positives and
negatives and computational overhead. If the publication mentions that the mechanism
actually produces FPs or FNs but it does not explicitly states any rates, then we use
an X mark (✘). If it is effective, then we use a tick mark (✔). If the mechanism was
not tested in terms of effectiveness at all, then we add a question mark (?). Note that
there are mechanisms where, even if they seem effective, their testing might be poor
contrary to other schemes that may have false alarms but have been tested thoroughly.
For example, SMask [Johns and Beyerlein 2007] appears to be an effective solution,
but the corresponding publication presents only a few test cases. On the other hand,
DSI [Nadji et al. 2006] appears to have FPs and FNs, but it was evaluated on a dataset
of hundreds of vulnerable websites.

In a similar manner, we list the overhead for every mechanism as stated in the
original publication. If the publication mentions that the mechanism suffers from a
runtime overheard but does not state the occurring overhead, then we use the X mark
(✘). If the authors did not measure the overhead, then we use a question mark (?).
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Table IV. Comparison Summary of Mechanisms Developed to Prevent XSS Attacks

Criteria
Computational

Approach Mechanism FP FN Overhead

Policy Enforcement

DSI [Nadji et al. 2006] ✘ ✘ 1.85%
BEEP [Jim et al. 2007] ? ✔ 14.4%
BrowserShield [Reis et al. 2007] ✔ ✔ 8%
CoreScript [Yu et al. 2007] ? ✘ ?
SOMA [Oda et al. 2008] ? ✔ 5.58%
Blueprint [Louw and Venkatakrishnan 2009] ? ✔ 13.6%
Phung et al. [2009] ? ✘ 5.37%
ConScript [Meyerovich and Livshits 2010] ? ? 7%
CSP [Stamm et al. 2010; Fazzini et al. 2015] ? ? ?
WebJail [Van Acker et al. 2011] ? ✘ 6.89ms
JSand [Agten et al. 2012] ? ? up to 365%
TreeHouse [Ingram and Walfish 2012] ? ? 757–1218ms
Google Caja ? ? ?
deDacota [Doupé et al. 2013] ? ✔ ?

ISR

SMask [Johns and Beyerlein 2007] ✘ ✘ ?
Noncespaces [Gundy and Chen 2009] ? ✔ 2%
xJS [Athanasopoulos et al. 2010] ✔ ✘ 1.6–40ms

Runtime Tainting

CSSE [Pietraszek and Berghe 2006] ✘ ✘ 2–10%
Vogt et al. [2007] ✘ ? ✘

WASC [Nanda et al. 2007] ✘ ✘ up to 30%
PHP Aspis [Papagiannis et al. 2011] ✘ ✘ 2×
SCRIPTGARD [Saxena et al. 2011] ? ? up to 3.82%
Stock et al. [2014] ? ✔ 7–17%

Training

SWAP [Wurzinger et al. 2009] ✘ ✘ up to 261ms
XSSDS [Johns et al. 2008] ✘ ✔ ?
XSS-GUARD [Bisht and Venkatakrishnan 2008] ✘ ✘ 5–24%
nSign ✔ ✘ 11.1%

8. CONCLUSION AND FUTURE WORK

We have proposed a training approach to counter the ongoing threat of JavaScript-
driven XSS attacks based on fine-grained, contextual script fingerprints. Our “defense-
in-depth” approach is flexible because it can include diverse elements to create a fin-
gerprint, depending on accuracy and convenience tradeoffs. Another advantage of our
approach is that it deals with all scripts, coming from every web location and through
any possible route. In this way, it can prevent a variety of attacks. Also, the browsing
experience of a user is not noticeably affected by the overhead that the layer imposes.
Finally, contrary to other schemes, developers are not required to modify the code of a
web application to support our approach.

A disadvantage regarding the effectiveness of our approach is that when a fingerprint
element is altered, a new fingerprint generation phase is necessary on the server side.
However, as we showed earlier in the article, with the increased adoption of test-driven
development and the use of automated testing and continuous integration frameworks,
the fingerprint generation phase can be easily repeated. Also, our experiments regard-
ing the temporal aspect of fingerprints, indicate that for a reasonable period of time,
and for most popular websites, the majority of fingerprints remain unchanged. This
suggests that even dynamic websites like Facebook and Twitter could take advantage
of a countermeasure like nSign.

Another limitation is that nSign depends on the creation of all corresponding fin-
gerprints via dynamic analysis, which is a known hard problem. Finally, the fact that
our layer is placed within the JavaScript engine of the browser implies that for users
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to benefit from our scheme’s security they must install an nSign-modified browser.
Nevertheless, as we observed in Section 7, many effective solutions require similar
modifications.

Although we have implemented our layer to wrap SpiderMonkey, the same layer
could be retrofitted in other JavaScript engines, such as Chrome’s V8.21 Future work
on our system involves the implementation of HTTP-based fingerprint data retrieval
and further evaluation in terms of effectiveness. In addition, we plan to investigate
how a third party can run the training phase so end-users can fetch the fingerprints
from that third party without the involvement of the website itself.

Availability

The source code of nSign is available as open-source software at https://github.com/
istlab/nSign/.

A. APPENDIX

Table V contains the complete list of the vulnerable sites that we tested. In particular,
they contain, for every vulnerable domain name, the URL pointing at the corresponding
entry at the XSSed.com archive and the current status of the vulnerability.

Table V. Real-World, Vulnerable Websites where nSign Was Tested

Vulnerable Domain URL entry at XSSed.com Status
search.nate.com http://www.xssed.com/mirror/70707/ unfixed
mg269.imageshack.us http://www.xssed.com/mirror/70704/ unfixed
www.aolsvc.merriam-webster.aol.com http://www.xssed.com/mirror/70719/ unfixed
cookbooks.adobe.com http://www.xssed.com/mirror/70721/ unfixed
wap.ebay.ie http://www.xssed.com/mirror/70726/ unfixed
hotels.qantas.com.au http://www.xssed.com/mirror/70735/ unfixed
www.attijaribank.com.tn http://www.xssed.com/mirror/70696/ unfixed
www.topgear.com http://www.xssed.com/mirror/70346/ fixed
webforms.ey.com http://www.xssed.com/mirror/70345/ unfixed
cib.ibank.ge http://www.xssed.com/mirror/69548/ unfixed
ie.jrc.ec.europa.eu http://www.xssed.com/mirror/69254/ unfixed
esupport.trendmicro.com http://www.xssed.com/mirror/68756/ fixed
mail.kmr.gov.ua http://www.xssed.com/mirror/68689/ unfixed
sge.corumba.ms.gov.br http://www.xssed.com/mirror/68688/ unfixed
zones.computerworld.com http://www.xssed.com/mirror/70652/ unfixed
www.nydailynews.com http://www.xssed.com/mirror/67620/ unfixed
software.gsfc.nasa.gov http://www.xssed.com/mirror/67530/ unfixed
seguridad.terra.es http://www.xssed.com/mirror/67296/ unfixed
www.jinx.com http://www.xssed.com/mirror/70589/ unfixed
www.nsbank.com http://www.xssed.com/mirror/70528/ unfixed
blackhat2010.sched.org http://www.xssed.com/mirror/70534/ unfixed
www.ccbill.com http://www.xssed.com/mirror/70537/ unfixed
w2.eff.org http://www.xssed.com/mirror/70353/ unfixed
www.adobe.com http://www.xssed.com/mirror/70463/ unfixed
www.antenna.gr http://www.xssed.com/mirror/70495/ fixed
pub.kathimerini.gr http://www.xssed.com/mirror/70510/ fixed
vod.grnet.gr http://www.xssed.com/mirror/70523/ fixed

(Continued)

21https://chromium.googlesource.com/v8/v8/.
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Table V. Continued

Vulnerable Domain URL entry at XSSed.com Status
panorama.ert.gr http://www.xssed.com/mirror/70506/ fixed
www.cia.gov http://www.xssed.com/mirror/70465/ fixed
www.eff.org http://www.xssed.com/mirror/70354/ unfixed
roma.corriere.it http://www.xssed.com/mirror/71241/ unfixed
www.slideshare.net http://www.xssed.com/mirror/71127/ fixed
www.truste.com http://www.xssed.com/mirror/71015/ unfixed
www.millenniumbank.ro http://www.xssed.com/mirror/71460/ unfixed
quicktrip.olympicair.com http://www.xssed.com/mirror/71369/ unfixed
blogs.oreilly.com http://www.xssed.com/mirror/71319/ unfixed
search.indiatimes.co http://www.xssed.com/mirror/71201/ unfixed
www.mysql.com http://www.xssed.com/mirror/71496/ fixed
www.accionpyme.mecon.gov.ar http://www.xssed.com/mirror/68499/ unfixed
reg.sun.com http://www.xssed.com/mirror/71687/ unfixed
www.clickbank.com http://www.xssed.com/mirror/71689/ unfixed
support.ts.fujitsu.com http://www.xssed.com/mirror/69286/ unfixed
jobs.orange.com http://www.xssed.com/mirror/70165/ unfixed
www.wi-fi.org http://www.xssed.com/mirror/64296/ unfixed
www.ema.europa.eu http://www.xssed.com/mirror/70197/ unfixed
sandiego.bbb.org http://www.xssed.com/mirror/70320/ unfixed
www.energyrating.gov.au http://www.xssed.com/mirror/67540/ unfixed
help.comodo.com http://www.xssed.com/mirror/71276/ unfixed
leibniz.stanford.edu http://www.xssed.com/mirror/71178/ unfixed
west.stanford.edu http://www.xssed.com/mirror/71175/ unfixed
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