
Generating the Blueprints of the Java Ecosystem

Vassilios Karakoidas∗, Dimitris Mitropoulos†, Panos Louridas∗, Georgios Gousios‡ and Diomidis Spinellis∗
∗Dept of Management Science and Technology

Athens University of Economics and Business

Athens, Greece

{bkarak,dds,louridas}@aueb.gr
†Computer Science Department

Columbia University

New York, United States

dimitro@cs.columbia.edu
‡Radboud University Nijmegen

Nijmegen, the Netherlands

g.gousios@cs.ru.nl

Abstract—Examining a large number of software artifacts can
provide the research community with data regarding quality and
design. We present a dataset obtained by statically analyzing
22730 JAR files taken from the Maven central archive, which is
the de-facto application library repository for the Java ecosystem.
For our analysis we used three popular static analysis tools that
calculate metrics regarding object-oriented design, program size,
and package design. The dataset contains the metrics results that
every tool reports for every selected JAR of the ecosystem. Our
dataset can be used to produce interesting research results, such
as measure the domain-specific language usage.

I. INTRODUCTION

We present a dataset that contains popular metrics, cal-

culated from the analysis of a large collection of software

artifacts written in Java. All artifacts were taken from the

Maven Central Repository [1].

Maven is a build automation tool used primarily for Java

projects, and it is maintained by the Apache Software Foun-

dation [1]. To describe the software project being built, its

dependencies, and the build order, Maven uses XML. The

central repository contains more than 400,000 JARs, in a

variety of programming languages such as Java, Clojure,

Groovy, and Scala. All supported languages use the JVM

platform as their runtime environment. To build a software

component, it dynamically downloads Java libraries and other

plug-ins from the Maven central repository, and stores them in

a local cache. The repository can be updated with new projects

and also with new versions of existing projects that can depend

on other versions.

To analyze the projects coming from Maven repository,

we used the following tools: a) CKJM [2], b) JDepend [3],

and c) CLMT [4]. All tools focus on three main aspects of

a software system, namely: object-oriented design, program

size, and package design. Such aspects are considered very

important because they provide quantifiable information about

the quality and structure of a software component.

In this paper we present: a) the construction process to

obtain the collection of the metrics results that the three

aforementioned tools produced for 22,730 JARs, b) our dataset

Maven Repository

Valid Project Collection
Filtered Java projects
with source and binary

jars

Workers

Analyse exported data

#1 #2 #3 #N
Workers: Download

the jars then execute
clmt, ckjm, and

jdepend

MySQL
Database

Measurements are
analysed and stored in
the MySQL database

Fig. 1. The dataset construction process.

and c) how researchers and practitioners can use the dataset

and produce meaningful results.

II. DATASET CONSTRUCTION PROCESS

The dataset construction process is illustrated in Figure 1.

In general, it follows the same methodology as Mitropoulos

et al. [5].

Initially, a snapshot of the Maven repository was down-

loaded locally. The repository contains various projects that

contain several versions. In our experiment, we only used Java

projects. For every Java project all versions were filtered out

and only the latest was kept. The process to identify them

was the following; Every project consists of two JAR files, one

that contains a compiled version of the project and one that

contains the source code. The projects that did not have both

binary and source JARs, were excluded from the experiment.

When the source JAR file was downloaded, it was scanned

for Java source files. If the source files were present in the

archive, then the project was flagged as a valid Java project.

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE

DOI 10.1109/MSR.2015.76

510

TABLE I
THE SELECTED MAVEN PROJECTS’ SIZE METRICS.

Metric Value
Project Count 11,365
File Count 449,213
Package Count 59,436
Lines of Code 74,565,772
Source Lines of Code 40,921,287
Comment Lines of Code 25,268,959
Number of Classes 370,518
Number of Interfaces 66,352
Number of Enumerations 9,879
Measurement Count 32,844,836

When the selection process was finished, we created a series

of processing tasks based on the selected JARs, and added

them to a task queue mechanism. Then we executed a number

of workers that checked out tasks from the queue, applied

the static analysis tools on each JAR and stored the results to

the data repository (a MySQL database system). The workers

were written in Python. In addition, there were several shell

scripts (bash) that performed several checks and sanitisation

tasks (e.g. checking for malformed results). The tools that were

applied on every JAR were the following:

• CKJM-ext (ckjm) [2]; which calculates many software

metrics, including the Chidamber and Kemmerer set of

object-oriented metrics [6]. The version of the tool that

we used for this experiment can be found in GitHub [7].

• JDepend (jdep) [3]; a tool that analyses JAR files that

contain compiled Java classes and calculates a series of

design metrics.

• CLMT (clmt) [4]; which stands for cross-language met-
ric tool and analyses the source code of several languages

in order to calculate a series of size metrics.

Table I presents several size metrics for our dataset. It

includes 11,365 projects, with more than 74 million lines of

code and almost 33 million unique measurements. Table III,

IV, V, and VI present the key metrics that are calculated

and stored in the dataset. Each tool focuses on a different

aspect of a software system; ckjm focuses on object-oriented

design metrics [8], [6], jdepend on package design, while clmt
focuses on program size metrics. Several metrics are calculated

by more than one tool, like cyclomatic complexity [9], which

is calculated by both clmt and ckjm. Both calculations are

available in the database.

A series of newly introduced metrics were also stored in

the database. Such metrics can count the usage of specific DSL

application libraries in a software project and they are included

in the Table VI. The methodology to identify and calculate

the DSL metrics was the following: A set of standard DSL

application libraries was identified, and the source was scanned

for specific import statements (e.g. java.util.regex). These

statements indicated that the standard package that implements

regular expressions was used, thus regular expressions were

used in the project. Build files or other resources that may

contain DSLs were not included. One final assumption was

also made; if XPath or XSLT were found in the source code,

TABLE II
LIST OF SELECTED DSL APPLICATION LIBRARIES.

DSL Java Package
Regular Expressions java.util.regex
XML javax.xml, org.w3c and org.xml
SQL java.sql and javax.sql
XPath java.xml.xpath
XSLT javax.xml.transform
RTF javax.swing.text.rtf
HTML javax.swing.text.html

TABLE III
CLASS DESIGN METRICS.

Depth Of Inheritance Tree ckjm
Coupling Between Objects ckjm
Weighted Methods Per Class ckjm
Response For Class ckjm
Lack Of Cohesion In Methods ckjm
Number Of Children ckjm
Attribute Hiding Factor clmt
Coupling Between Methods ckjm
Average Method Complexity ckjm
Cohesion Among Methods of Class ckjm
Data Access Metric ckjm, clmt
Inheritance Coupling ckjm
Lack Of Cohesion In Methods3 ckjm
Measure Of Aggregation ckjm
Measure Of Functional Abstraction ckjm
Number of Attributes clmt
Method Hiding Factor clmt

TABLE IV
METHOD DESIGN METRICS.

Number of Method Parameters clmt
Number of Methods clmt, ckjm
McCabe Cyclomatic Complexity ckjm, clmt

TABLE V
PACKAGE DESIGN METRICS.

Number of Concrete Classes jdep
Afferent Couplings jdep, ckjm
Efferent Couplings jdep, ckjm
Instability jdep
Abstractness jdep
Distance Main Sequence jdep

then the project would be marked as a project that utilizes

XML. This is because both languages are used for query and

transformations on XML DOM trees. Table II lists the selected

DSLs application libraries. Note that we focused on libraries

that were included as part of the Java SDK.

In Section V, we describe an experiment based on these

metrics. The experiment measures the popularity of DSL usage

for the dataset and therefore for the Java ecosystem in general.

III. DATABASE STRUCTURE

Figure 2 illustrates the database schema. Specifically, it

consists of five tables; measurement, category, identifiers,

measurement type, and project. The central database table is

measurement, which holds the measurement values. The other

tables can be used for normalization.

511

TABLE VI
PROGRAM SIZE METRICS.

Number of Classes clmt, ckjm, jdep
Number of Enumerations clmt, ckjm
Number of Interfaces clmt, ckjm
Module Count clmt, ckjm
Comments Lines Of Code clmt
Lines Of Code clmt, ckjm
Source Lines Of Code clmt
Function Oriented Code clmt
DSL Usage Count clmt
RTF Usage Count clmt
Regex Usage Count clmt
HTML Usage Count clmt
XPath Usage Count clmt
XSLT Usage Count clmt
XML Usage Count clmt
SQL Usage Count clmt
File Count clmt

Metrics are divided into six categories that define their

scope; module, class, method, code unit, and project-wide.

These values are stored in category database table.

The descriptive names for each metric are stored in the

measurement type database table. There are 65 metrics avail-

able in the dataset. The names are composed by the actual

metric name and the tool that was used to calculate them.

For instance, McCabe clmt denotes that the metric name is

the McCabe cyclomatic complexity generated by the clmt
tool, while McCabe ckjm means that it is the same metric

calculated by the ckjm tool.

Filenames, methods, classes and package names along

with other identifiers are stored in the identifiers table.

Note that each measurement has a related filename and

a related identifier that points to a software element. For

example the afferent coupling metric for the module in

the directory “com/scalagent/jmx” is related to the identifier

com.scalagent.jmx. Finally, the database table project contains

the related project identifiers, directly extracted from the

maven repository.

IV. RESEARCH OPPORTUNITIES

The measurements provided by our dataset, can be used

by researchers and practitioners alike. Researchers can use

the data to experiment with new software quality models, or

validate them with real projects. Practitioners who develop

tools that calculate metrics can use the dataset to validate if

their tools produce correct results.

The dataset also includes the DSL-related metrics, which

quantifies the usage of basic DSL application libraries that are

already shipped with the Java SDK. These kind of metrics, can

be really useful for researchers that focus on DSL embedding,

or study DSL usage patterns [10] as we illustrate in the

following section. In addition, the dataset covers a significant

portion of the Maven repository, it can be used for large scale

empirical studies.

Finally, our dataset can be used side-by-side with the ones

presented by Mitropoulos et al. [11] and Raemaekers et al. [12]

TABLE VII
TOP DSL USAGE COMBINATIONS.

DSLs Count
XML 1,561
Regex 909
SQL 493
XML, XSLT 475
Regex, XML, XSLT 158
Regex, XML 303
SQL, XML 162
Regex, SQL 116
Regex, SQL, XML, XSLT 80
Regex, SQL, XML 71
SQL, XML, XSLT 54
XML, XPath 50

in order to examine the datasets for metric correlations. This

is because their datasets were also produced by analyzing

projects coming from the Maven repository.

V. EXPERIMENTING WITH THE DATASET

The initial goal of this experiment was to provide quantifi-

able results that are indicative regarding the usage of DSLs

in multiple Java projects. The related metrics can be found

in the database table named measuremnt type, and they are

the following: RTFUsage, RegexUsage, HTMLUsage, HTM-
LUsage, XPathUsage, XSLTUsage, XMLUsage, SQLUsage,

and DSLCount. A Python script that analysed the measure-

ments stored in the database, we produced the results illus-

trated in Table VII. This table, lists popular DSL usage combi-

nations found in our dataset. An interesting observation is that

XML is the most widespread DSL with 1,561 occurrences in

11,365 projects (13%). Regular expressions are also popular

with 909 occurrences (7%). Note that the numbers represents

the projects where XML and regular expressions were used as

the only DSL.

VI. LIMITATIONS

As we mentioned earlier, to produce our dataset we adopted

a narrow selection process. In particular, we identified and

analyzed only projects that were written in Java and had both

the source code and the binary JAR available in the repository.

The former reduced significantly the number of projects that

were analyzed, because many of them provided only the binary

JAR. Since only clmt analyses the source code, this resulted

in the reduction of the number of measurements that exposed

object-oriented and package design issues.

Finally, only one version was analyzed per project (the

latest, unless it violated the aforementioned restriction). This

decision renders the dataset unusable, for research focused on

software evolution.

VII. RELATED WORK

The Maven ecosystem has been previously analyzed by

Raemaekers et al. [12] to produce the Maven dependency
dataset. Apart from basic information like individual methods,

classes, packages and lines of code for every JAR, this dataset

512

prj_pk: int(11)
prj_name: varchar(500)

project

cat_pk: int(11)
cat_name: varchar(500)

category

ident_pk: int(11)
ident_name: varchar(500)

identifiers

meas_pk: int(11)
meas_value: varchar(500)
meas_id: int(11)
meas_filename: int(11)
cat_pk: int(11)
prj_pk: int(11)
mt_pk: int(11)

measurement

mt_pk: int(11)
mt_name: varchar(500)

measurement_type

Fig. 2. The database schema.

also includes a database with all the connections between the

aforementioned elements.

Also, Mitropoulos et al. performed a similar experiment [5].

In particular, they used the FindBugs [11] static analysis

tool, to analyze a large part of the maven repository. Their

dataset includes for each JAR, a corresponding bug collection

produced by FindBugs. Our work differs from these two

approaches since it presents the metrics calculated by the three

different static analysis tools that calculate metrics regarding

object-oriented design, program size, and package design.

VIII. CONCLUSIONS

We presented a dataset created by applying three different

static analysis tools on Java projects coming from the Maven

Central repository. The results involve a variety of software

metrics from program size to object-oriented design. We have

also shown how our data can be used to extract meaningful

results concerning DSL usage in Java Projects.

As we discussed, our selection process was strict, filtering

out projects that did not have the project’s sources. However,

we are planning to expand our project coverage in the future

and include projects that cannot be analysed by all tools (due to

source code unavailability). Finally, by including all versions

for each project we can allow researchers to use our dataset

in the evolution context.

IX. AVAILABILITY

The dataset and the source code of this publication, along

with some utility scripts are available at https://github.com/

bkarak/data msr2015. The SQL dump of the database is avail-

able at http://gaijin.dmst.aueb.gr/∼bkarak/data msr2015.bz2.

ACKNOWLEDGMENT

This research has been co-financed by the European Union

(European Social Fund esf) and Greek national funds through

the Operational Program “Education and Lifelong Learning”

of the National Strategic Reference Framework (nsrf) - Re-

search Funding Program: Thalis Athens University of Eco-

nomics and Business - software engineering research platform.

REFERENCES

[1] “Maven,” February 2015, http://maven.apache.org/.

[2] D. Spinellis, “Tool writing: A forgotten art?” IEEE Software, vol. 22,
no. 4, pp. 9–11, July/August 2005.

[3] “Jdepend,” 2009, http://clarkware.com/software/JDepend.html.

[4] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams,
I. Samoladas, and I. Stamelos, “Evaluating the quality of open source
software,” in SQM 2008: Second International Workshop on Software
Quality and Maintainability—12th European Conference on Software
Maintenance and Reengineering (CSMR 2008) satellite event. The
Reengineering Forum, Apr. 2008, pp. 5–28, electronic Notes in Theo-
retical Computer Science Volume 233 (March 2009).

[5] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinel-
lis, “The bug catalog of the maven ecosystem,” in MSR 2014, The 11th
Working Conference on Mining Software Repositories. ACM, May
2014.

[6] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[7] “Ckjm extended version,” February 2015,
https://github.com/bkarak/ckjm ext.

[8] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[9] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[10] V. Karakoidas, “On domain-specific languages usage (why dsls really
matter),” XRDS: Crossroads, The ACM Magazine for Students, vol. 20,
no. 3, pp. 16–17, March 2014.

[11] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, Dec. 2004.

[12] S. Raemaekers, A. v. Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in Proceedings of
the 10th Working Conference on Mining Software Repositories,
ser. MSR ’13, 2013, pp. 221–224. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2487085.2487129

513

