
Empir Software Eng
DOI 10.1007/s10664-014-9343-7

Charting the API minefield using software telemetry data

Maria Kechagia ·Dimitris Mitropoulos ·
Diomidis Spinellis

© Springer Science+Business Media New York 2014

Abstract Programs draw significant parts of their functionality through the use of Appli-
cation Programming Interfaces (APIs). Apart from the way developers incorporate APIs in
their software, the stability of these programs depends on the design and implementation of
the APIs. In this work, we report how we used software telemetry data to analyze the causes
of API failures in Android applications. Specifically, we got 4.9 GB worth of crash data that
thousands of applications sent to a centralized crash report management service. We pro-
cessed that data to extract approximately a million stack traces, stitching together parts of
chained exceptions, and established heuristic rules to draw the border between applications
and the API calls. We examined a set of more than a half million stack traces associated
with risky API calls to map the space of the most common application failure reasons. Our
findings show that the top ones can be attributed to memory exhaustion, race conditions
or deadlocks, and missing or corrupt resources. Given the classes of the crash causes we
identified, we recommend API design and implementation choices, such as specific excep-
tions, default resources, and non-blocking algorithms, that can eliminate common failures.
In addition, we argue that development tools like memory analyzers, thread debuggers, and
static analyzers can prevent crashes through early code testing and analysis. Finally, some
execution platform and framework designs for process and memory management can also
eliminate some application crashes.

Communicated by: Andreas Zeller

M. Kechagia (�) · D. Mitropoulos · D. Spinellis
Department of Management Science and Technology, Athens University of Economics and Business,
Athens, Greece
e-mail: mkechagia@aueb.gr

D. Mitropoulos
e-mail: dimitro@cs.columbia.edu

D. Spinellis
e-mail: dds@aueb.gr

Present Address:
D. Mitropoulos
Computer Science Department, Columbia University, New York, NY, USA

mailto:mkechagia@aueb.gr
mailto:dimitro@cs.columbia.edu
mailto:dds@aueb.gr

Empir Software Eng

Keywords Application programming interfaces · Stack traces · Reliability ·
Mobile applications

1 Introduction

Application programming interfaces (APIs) are the unsung heroes of information technol-
ogy. Unlike algorithms, databases, programming languages, and operating systems, there
are no courses or academic chairs dedicated to them. Yet, all these disciplines would be use-
less without suitable APIs. More importantly, any non-trivial modern program depends on
usable, robust, and efficient APIs to implement a significant part of its functionality.

Recent work has evaluated API usability and documentation (Stylos and Myers 2008;
Stylos 2009; Robillard 2009; Farooq et al. 2010; Robillard and DeLine 2011; Maalej and
Robillard 2013). There is however scant empirical evidence regarding API design and imple-
mentation guidelines; published articles focus on general practices (Bloch 2006; Henning
2009; Tulach 2012). In addition, although there is a body of research on bug characteriza-
tion (Li et al. 2006; Guo et al. 2010; Tan et al. 2013) and crash analysis (Ganapathi et al.
2006; Ganapathi and Patterson 2005; Kim et al. 2011a), to the best of our knowledge, there
is no study that attributes crash causes to API deficiencies. The main two contributions of
this paper are: a) a method that links telemetry data from application crashes to API calls,
and b) the use of this method to identify API weaknesses that can lead to execution failures.

In this context, we aim: a) to show API design and implementation deficiencies that
commonly lead to application crashes in mobile software and b) to improve the design and
use of mobile software APIs, based on clear documentation, appropriate debugging tools, as
well as frameworks and platforms for crash prevention.

To meet our goals, we conducted an empirical study on software telemetry data from
mobile application crashes. Specifically, we processed that data to extract more than a
million stack traces, stitching together parts reported separately as elements of a chained
exception. We then established heuristic rules to draw the border between applications
and API calls. This allowed us to pin down crashes to specific API calls, and analyze the
causes behind the most common problems. Our results show that the top crash cause cate-
gories can be attributed to memory exhaustion, race conditions or deadlocks, and missing
resources. We were however unable to classify the crash causes for a significant number
(almost 10 %) of signatures associated with generic exceptions (RuntimeException,
NullPointerException), which possibly stem from programming flaws and poor API

documentation.
Then, we conducted a qualitative study and a short bibliographic survey to find indicative

solutions that could diminish crashes similar to those of our sample, and improve mobile
applications’ user experience. In particular, we examined a set of representative crashes
from each crash cause category and we concluded on API recommendations for fault tol-
erance in mobile software. Also, we found in bibliography tools for fault localization that
can aid developers to write applications with fewer faults and execution frameworks and
platforms that can offer fault prevention to common mobile software problems regarding
process and memory management. For the understanding of software faults and associated
fault elimination methods consider the work of Avizienis et al. (2004).

We chose to focus our study on the APIs rather than other sources of crashes for a
number of reasons. First, to address an imbalance of information. Whereas application
and operating system builders can obtain a wealth of information regarding the design and
implementation of their code through the results of testing and, increasingly, telemetry, these

Empir Software Eng

results are unlikely to reach API designers, who work or are perceived to work in a differ-
ent area. (An exception to this observation may be vertically-integrated companies, such
as Microsoft and Oracle, which develop code along the whole system stack.) Reports on
crashes that could have been avoided through a better API design and implementation, land
on the hands of application builders, who address them by fixing their applications on a
case by case basis. This brings us to the second reason, namely impact. Locating deficient
APIs and improving their design or implementation can improve the stability of thousands
of applications that use them. Then, comes an unashamedly practical aspect. Performing a
wide-range analysis of application software errors based on telemetry data would be diffi-
cult, because the code of applications submitting such data is typically not openly available.
In contrast, the code of most APIs we encountered in our study is available as open source
software. Finally, we subscribe to the view that there are many interesting research topics
associated with the design and implementation of APIs, such as: 1) prediction of application
crashes depending on API version changes, 2) fault prevention based on API design choices
(error handling), and 3) guidelines and quality metrics for APIs of different domains.

The contributions of this work are:

– a method for stratifying elements of arbitrary crash stack traces into the operating
system framework, the application, and the API,

– a presentation of APIs that, according to empirical data, lead to application crashes,
– an analysis of API design and implementation choices that are often the root cause of

application crashes, and
– an overview of indicative API recommendations, tools, and execution platforms and

frameworks able to decrease the number of application crashes.

Although this study was conducted by using data from a single system—Android, this
platform provides a valuable subject for a broad study regarding API evaluation. First, the
Android API is quite large and lucrative for examination.1 Second, the implementation of
its API is open source, and, thus, we can get and study its code. Finally, Android is a leading
platform, which runs on millions of devices, and its API is approximately used by 700,000
applications. This is important for the assessment of an API, as we can observe its use on
samples of a lot of diversity.

In the rest of this paper, we first outline related work (Section 2). We then describe the
methods of our study (Section 3). In Section 4 we discuss descriptive results and the crash
cause categories we found. In Section 5 we present a summary of API recommendations,
tools, and execution platforms and frameworks able to reduce the number of the crashes that
belong to the crash cause categories. We end up with our threats to validity in Section 6 and
conclude with an overview of the big picture and directions for future work in Section 7.
Finally, Table 1 contains terms we broadly use in the next sections.

2 Related Work

Our approach is related to previous work in the following areas, namely: software telemetry,
crash cause analysis, API evaluation, and reliability analysis in Android.

1http://developer.android.com/reference/packages.html (All URL references have been archived through
http://www.webcitation.org/ and the archived URLs can be found in https://github.com/mkechagia/
stack-traces.)

http://developer.android.com/reference/packages.html
http://www.webcitation.org/
https://github.com/mkechagia/stack-traces
https://github.com/mkechagia/stack-traces

Empir Software Eng

Table 1 Terms and definitions

Term Definition

Bug An error or a programming defect that can lead to a crash.

Crash Unexpected termination of a program.

Crash report Detailed record of a crash that is comprised of a stack trace

and other runtime metadata.

Stack trace Ordered chain of frames (each associated with a method signature).

Signature Part of a stack trace directly associated with the crash cause (Section 3.3).

Crash cause The reason of an application execution failure, highlighted

by the stack trace.

Crash category A group of similar crash causes (e.g. memory exhaustion or

race conditions).

Exception “An event, which occurs during the execution of a program,

that disrupts the normal flow of the program’s instructions.”a

Checked exception “Exceptional conditions that a well-written application

should anticipate and recover from.”b

Unchecked exception Exceptional conditions that are external

(Error) or internal (RuntimeException) to the application, and that the

application usually cannot anticipate or recover from.c

ahttp://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
bhttp://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html. See checked exceptions.
chttp://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html.See unchecked exceptions.

2.1 Software Telemetry

Telemetry is a technology that allows data measurements and analysis to be made from a
distance. In software engineering, telemetry has been used in several manners. A notable
case involves the collection of project-related data via sensors attached to software devel-
opment tools to support project management decision making (Johnson et al. 2005). The
sensors send project-related data back to a server, and project members can access the data
for analysis via the web. Telemetry has also been employed to ensure software depend-
ability (Gross et al. 2006). This approach involves the instrumentation of a system for the
continuous monitoring of its runtime state. The collected data can be used for the prediction
of system failures using statistical models. A similar method has been used for the detec-
tion of software aging signs in complex systems (Gross et al. 2002). In this study, we used
software telemetry data from a centralized crash report management service to identify API

deficiencies. The data—stack traces—stem from Android application failures.

2.2 Crash Cause Analysis

Crash reports from operating systems and applications can give researchers valuable insight
into the reasons behind execution failures. This is important for the development of effec-
tive debugging and testing tools, and consequently for software quality, reliability, and

http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Empir Software Eng

dependability (Endres 1975; Lee and Iyer 1995; Sullivan and Chillarege 1991; Ganapathi
et al. 2006; Tan et al. 2013). In this study we examined crashes in mobile software, which
involves particular challenges: restricted memory, multithreading applications, connectivity
issues, and user permissions.

2.2.1 Categorization Approaches

The categorization of execution failures can contribute to the understanding and organiza-
tion of software faults and execution failures. Ploski et al. (2007) provided a comparison
among different categorization approaches of software faults. They studied six distinguished
works (Knuth 1989; Beizer 2003; Gray 1986; Chillarege et al. 1992; Eisenstadt 1997;
DeMillo and Mathur 1995) and presented a roadmap for the development of a fault cat-
egorization schema. We took into consideration this roadmap for the organization of our
study. In the following paragraphs, we present three empirical studies that are close to our
approach and compare them with it.

Sullivan and Chillarege (1991) classified reports from software defects for a high-end
operating product of IBM to highlight common software defects. Specifically, they identified
two defect classes: overlay errors due to memory errors and regular errors due to data,
synchronization, compilation, and logic errors. Their findings show that most crashes come
from memory and synchronization causes. Fifteen years later, we found that the same causes
are dominant in mobile software. This fact possibly spells a need for more effective tools
for fault tolerance and better support from system designers to developers.

Recently, Tan et al. (2013) reported bug characteristics from Apache, Mozilla, and the
Linux kernel and investigated bugs that can evolve in crashes. Even though we focused on
the stack trace domain, rather than the temporal domain looking for API design and imple-
mentation deficiencies in mobile software, our findings agree in many cases. We too found
that memory exhaustion is a major crash cause (23 %) in mobile software. One possible
reason for this can be the restricted memory of the mobile devices and devices’ sensibil-
ity to respond to orientation changes. In addition, we identified that hangs and crashes due
to concurrency issues form another significant category that matches the findings of Tan
et al. (2013) for the Linux kernel. Thus, we agree with Tan et al. (2013) that both memory
and concurrency issues are the most severe causes of crashes and hangs in mobile soft-
ware (40 %). Finally, we similarly found that a significant number (almost 20 %) of crash
causes (indexing problem and invalid format or syntax) could be associated with semantic
bugs.

Crash causes can be classified based on the manifestation of crashes in different
system components aiming to improve software reliability and dependability. Character-
istically, Ganapathi et al. (2006) analyzed crash reports, from the Windows XP kernel, to
identify relationships between crashes and failure causes and improve operating systems’
dependability. Their findings show that most crashes occurred in the operating system core,
the graphics and application drivers. In our study, we also classified crash data but based on
API crash causes and not on the location (including hardware) of the manifested crashes.

2.2.2 Impact

Root cause analysis can be used in fault tolerance and prediction, contributing in the
improvement of debugging efforts. For instance (Kim et al. 2011a) analyzed crash reports
from Firefox and Thunderbird and applied machine learning techniques to predict the
top crashes to be scheduled for early fixing. In addition, Podgurski et al. (2003) applied

Empir Software Eng

feature selection, clustering, and visualization to group system failures and aid program-
mers to prioritize their debugging efforts. Finally, Shelton et al. (2000) conducted robustness
testing for the Microsoft and Linux APIs to compare the capabilities of both operating sys-
tems. Here, we analyzed crash data to examine common crash causes of mobile software
and make possible fault tolerance suggestions to overcome API deficiencies.

2.2.3 Mining Techniques

In addition to the manually and machine learning categorization of the crash reports, stack
traces can be grouped using “bucketing” and execution path reconstruction. In particular,
Dang et al. (2012) presented a technique based on call stack matching. This technique
measures the similarities of call stacks and assigns the reports to appropriate categories
(“buckets”). Kim et al. (2011c) proposed an approach based on crash graphs, which are
an aggregated view of crashes. Then, they used the graphs to improve categorization by
winnowing out crashes between similar graphs. Liblit and Aiken (2002) studied the recon-
struction of execution paths based on partial execution information like backtracks. Their
technique can assist developers to find the root cause of a crash. In our study, we used ele-
ments from both methods (“bucketing” and execution paths) to find similarities in method
calls from the stack traces and visualizing the execution paths as graphs (see Fig. 2).

2.3 API Evaluation

An important topic in software engineering is the development of APIs that can improve
developers’ productivity and resulting products’ quality. Many papers study the assessment
of APIs based on usability tests and the evaluation of their documentation. Additionally,
many specialized tools have been developed to support the study of API usability and learn-
ability. Recently, Robillard et al. (2013) published a detailed survey on such tools and
mining techniques regarding API analysis.

2.3.1 Usability

Usability is a well-documented topic regarding APIs. Clarke (2004) presented a framework
of cognitive dimensions for the assessment of API design decisions in terms of usability. A
stream of comparative studies has dealt with the usability outcomes of particular API design
decisions and their impact on developers’ productivity. Specifically, Ellis et al. (2007)
argued that the factory pattern is more efficient than constructors, while Stylos and Clarke
(2007) found that developers are more productive when using APIs that do not require con-
structor parameters. The efficient use of APIs has been also examined by Kawrykow and
Robillard (2009) through source code and byte code analysis. In particular, they checked
whether developers write code that replicates the behavior of a library method without actu-
ally calling it. Looking at the choice of an API from the developers’ side, de Souza and
Bentolila (2009) presented an approach that allows developers to evaluate API usability
based on complexity metrics. Finally, learning theories have also been used in the usabil-
ity evaluation of APIs (Gerken et al. 2011). Taking into account API usability problems
reported in the above studies, we tried to identify application crash causes that could be
related to poor API usability. We also searched for crash causes associated with poor API

documentation quality and learnability.

Empir Software Eng

2.3.2 Documentation Learnability

Documentation quality is directly associated with the developers’ productivity and the effort
required for software maintenance. There is a growing research interest for the identification
of the obstacles that developers face when they use an API’s documentation. For instance,
Robillard and DeLine (2011) introduced API documentation approaches, such as code
examples, API use scenarios, formatting, and presentation, that can increase productivity
and overcome developers’ learning barriers.

Recently, Maalej and Robillard (2013) identified patterns of knowledge in API reference
documentation and grouped them into a taxonomy that can be used for API evaluation and
content organization. In addition, Buse and Weimer (2012) developed an algorithm that syn-
thesizes human-readable API usage examples that can assist developers when they study the
API documentation. Finally, Shi et al. (2011) conducted a quantitative study on the evolu-
tion of API documentation of five real-world Java libraries. In our study, we looked up the
methods participating in the stack traces in the Android API reference and categorized the
thrown exceptions according to their recorded causes. Our empirical evidence suggests that
many crashes are associated with unclear documentation (see Section 4.2.8).

Finally, Sproull and Waldo (2014) first argued that performance issues related to API calls
should be documented in the API reference to meet contract expectations between the caller
and the implementation. In our study, we empirically showed that there were many cases
where the API documentation provided no hints about the performance of the API methods.
However, since mobile devices have significantly restricted resources, it seems to be quite
important for the developers to know from the API documentation the resources particular
methods are consuming. For instance, we found that the top crash cause of our sample
can be attributed to memory exhaustion (23 %). However, there was no information about
methods susceptible to memory exhaustion and related exceptions in the API reference.

2.4 Reliability Analysis in Android

On the recent years, the market of mobile software has boomed. Thus, a strand of research
has focused on the investigation of mobile software platforms and applications. As Android
is an open source platform, the majority of the studies on mobile software analyzes
Android’s operating system and its applications’ source code. Most works examine security
issues regarding application permissions and access control policies (Shabtai et al. 2012,
2010; Enck et al. 2009; Ongtang et al. 2010), as well as performance and energy manage-
ment concerns (Kim et al. 2012; Vallina-Rodriguez and Crowcroft 2013). Given however
that millions of developers use the Android API reference and its source code to implement
their ideas, there is a demand for a rigorous investigation of the Android API.

Felt et al. (2011) analyzed the Android source code to pinpoint API permission leaks.
They found that a lot of Android applications are overprivileged because developers fail to
understand the privileges referred in the Android API documentation. In addition, Linares-
Vásquez et al. (2013) examined the implementation of different Android API versions and
argued that heavy bug fixes and changes in the API have negative impact on the ratings
of Android third-party applications. Maji et al. (2010) also explored two mobile operating
systems, Android and Symbian, and grouped their bugs based on bug reports from issue
tracking systems. Their categories were associated with the system segments where the bugs
were manifested. Then, they categorized appropriate source code bug fixes. In this study,

Empir Software Eng

we judge the Android API from many different angles (design and implementation), based
on the causes of the manifested application crashes. We add to the previously discussed
works by pinpointing insufficient documentation about method exceptions and missing fault
recovery mechanisms of the provided interfaces.

3 Methods

To understand API deficiencies based on the analysis of stack traces and make relevant
suggestion for crash prevention, we followed the steps below.

1. We cleaned and processed a set of almost one million stack traces. From each stack
trace, we kept a characteristic part—signature (see Table 1 and Section 3.3). A
signature succinctly represents the salient API-related data associated with the crash.

2. We sorted the signatures based on their number of occurrences in the stack traces
and we split them in three subsets, based on the packages of the included methods—
(com.)android.*, java.*, and com.*. We examined the crash causes for each
subset and we organized our findings into eight broad categories.

3. Having mapped the space of the most common causes of application crashes, we made
indicative API design and implementation recommendations. Specifically, we drew and
examined a set of representative signatures from each crash cause category and we
sought possible suggestions that could eliminate such crashes. We also conducted a
survey of development tools and execution platforms and frameworks able to prevent
execution failures.

3.1 Data Provenance and Description

The subject of this study concerns stack traces from Android mobile application crashes
that were collected through a centralized crash report management service.

Android is an embedded device based on the Linux operating system (kernel version 2.6)
capable of hosting mobile applications. Figure 1 illustrates the architecture of the Android
platform running on a mobile device. The Linux kernel is at the bottom layer and forms the
border between the hardware and the rest of the software. It offers services such as mem-
ory management, process management, networking, power management, and drivers (flash
memory, bluetooth, Wi-Fi, keyboard, audio). Dalvik is the virtual machine in the middle

Linux

JNI/Dalvik

Android
APIs

3rd Party
Library APIs

Java SE
APIs

Standard/3rd Party Applications

Fig. 1 The Android Platform Architecture

Empir Software Eng

layer, which is essential for running different applications at the same time. Each appli-
cation runs as a separate process, having its own virtual machine instance. Android, also,
includes C/C++ libraries used by a lot of components (e.g. SQLite, SSL, Media Framework,
Surface Manager) through the Java Native Interface (JNI). Finally, the Android platform
hosts several standard applications (e.g. contacts, browser, phone) and others provided by
third parties. All the Android applications are written in Java and use APIs from the Android
framework, third-party libraries, and the Java Software Environment (JSE).

Every Android application can contain four component types: activities associated with
the user interface screens, services that run in the background (e.g. playing music or fetching
data), content providers that manage shared application data (either in an SQLite database
or on the web) and broadcast receivers that respond to broadcast announcements (i.e. when
the data downloading has been completed). These components can be activated through
messages called Intent objects. Intent objects carry a description of actions to be
accomplished by a component, so that the system can select the right component for their
execution. In addition, Android uses an AndroidManifest.xml file per application to
document each application’s components. This file contains not only information about the
components themselves, but also about other application requirements such as the version
of the operating system, Java packages, and libraries’ names. Finally, this file defines the
permissions the application requires to interact with other applications or external sources.

The provider of our data set, BugSense Inc.,2 was a privately held company founded
in 2011, and based in San Francisco. Its aim was to provide error reporting, analytics, and
insights regarding the performance and quality of mobile applications. About 2,535 iPhone
and 4,755 Android applications had sent stack traces to BugSense. An application could
send reports to BugSense by installing an SDK and adding one line to its source code. If the
application crashed, the stack trace was sent to BugSense’s servers in JSON format, and then
stored in the Google App Engine Data store3 and a separate database. Application vendors
could check this data by logging to BugSense’s dashboard.

We chose to analyze a dataset of crash reports from Android applications for the fol-
lowing reasons: 1) the vast number of stack traces from mobile applications, 2) the Java
language Android applications are based on, and 3) the ease with which the collected data
could be manipulated. Our sample comes from 1,629,940 stack traces collected in real time
from the January 13th to April 11th, 2012. The data set was extracted between the April
15th and May 1st, 2012, by running a script based on the Google Data store Python API.
The stack traces come from 4,618 applications and the Android API refers to versions from
1.0.0 to 4.1.1.

3.2 Data Cleaning

We started the data analysis by cleaning our data set. Executing SQL queries, we isolated
from BugSense’s dump of the crash reports 920,437 records associated with Android appli-
cations. Each entry comprised a key, an error identifier, an application key, and a stack trace.
For the purposes of this study, we kept only the stack trace.

As the format diversity among the stack traces was significant, we selected the stack
traces or parts of the stack traces that were in line with the documented format of the

2http://en.wikipedia.org/wiki/Bugsense. Recently acquired by Splunk Inc. (http://www.splunk.com/)
3https://cloud.google.com/appengine/docs/python/datastore/

http://en.wikipedia.org/wiki/Bugsense.
http://www.splunk.com/
https://cloud.google.com/appengine/docs/python/datastore/

Empir Software Eng

printStackTrace() method, from the Throwable4 Java class. For this, we wrote a
parser in Python,5 using regular expressions and dictionaries as data structures. Algorithm 1
describes in pseudocode the basic routine of our Python script, which we used to isolate the
well-formed stack traces for our analysis.

This involved removing 2.08 % of the initial stack traces. Thus, after parsing, we
kept 901,274 well-formed stack traces. Listing 1 illustrates a representative chained

4http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
5Our source codes can be found in: https://github.com/mkechagia/stack-traces. For the cleaning see
parsing st.py file

http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
https://github.com/mkechagia/stack-traces

Empir Software Eng

(having more than one exception level) stack trace from our data set. In accor-
dance with the exceptions’ hierarchy in the printStackTrace() Java method, the
RuntimeException in line 1 of Listing 1 refers to the HighLevelException and
the IndexOutOfBoundsException in line 14 refers to the LowLevelException.
Finally, line 27 represents the “enclosing” exception and it highlights the end point when
parsing a stack trace with chains.

After parsing the stack traces, we kept only the method names, linked chained exceptions,
and reversed their order to follow the caller-callee direction. Listing 2 illustrates the parsed
chain corresponding to the stack trace of Listing 1. In particular, for each valid stack trace,
which was stored in a dictionary (see Algorithm 1), our script reverses the list of the values
(frames) for each dictionary key (exception level). To get Listing 2, the script reversed the
order of lines 1–13 (HighLevelException chain) of Listing 1 and, then, the order of
lines 14-26 (LowLevelException chain) of Listing 1. Finally, the script removed the
line 26 of Listing 1, which is the link between the two exception level chains of our example.
See also the relevant line, 26, in Algorithm 1.

Figure 2 depicts a graph of method call chains, from the most common 15 parsed stack
traces, that lead to exceptions. It is evident that a method can be called by many others that
exist in different stack traces (incoming edges), and, thus, it can appear several times. This
metric is an indicator of the importance of a method, but this is out of the scope of this
work. The graph illustrates the complexity of the method calls and the possibility of finding
risky API calls from stack traces to locate problems into the API. In the following section
we discuss how we located risky API calls from the processed stack traces.

Empir Software Eng

3.3 Locating Risky API Calls

To organize our sample and focus on application crashes due to API defeciencies we used
a heuristic method that identifies risky API calls in stack traces. We did this since we had

Fig. 2 A graph of the 15 most common stack traces representing 41 thousand cases. Solid line (orange):
calls from the Android framework; dashed line (blue): application calls; dotted line (green): API calls; square:
exceptions; circle: methods

Empir Software Eng

also stack traces with only application calls in our sample and we wanted to extract only the
stack traces with API calls.

With the term risky API call we refer to a call from a method of an Android application
to an API method that is probably responsible for an application crash. The main reasons
that a call to an API method could lead a program to an execution failure are: 1) an inappro-
priate call to an API method from a method of an application (i.e. implementation defect of
the application), 2) defects in the implementation of an API method (i.e. indexing problems,
cache structures of an arbitrary size that lead to memory leaks, careless use of the string
type for resource codes), 3) defects in the design of an API method (i.e. missing preven-
tion mechanisms for heavy memory consumption, undocumented exceptions for common
runtime errors, unclear documentation about permissions, lack of useful mechanisms for
multithreading applications). In the rest section we describe how we locate such calls in
stack traces from application crashes and why these calls are risky. In Table 2 we explain the
types of the method calls we examine and in Table 3 we provide representative examples.

Isolating calls to arbitrary APIs within stack traces of unknown application code called
in diverse ways from a larger framework is not trivial. In general, a stack trace of method
calls, possibly from the Android framework F leading to an exception E, possibly through
an application A and an API I , can be described through the following regular expression.

((F + (A + I∗)∗)|(F ∗ (A + I∗)+))E

This expresses various scenarios in which an exception can occur (see some examples in
Fig. 2).

Case 1 Within the Android framework: F + E

Case 2 Within the application: F ∗ A + E

Case 3 When the application calls an API: F ∗ A + I + E

Case 4 Within an API-registered application callback: F ∗ (A + I + A+)+ E

Case 5 When an API-registered application callback calls an API: F ∗ (A + I+){2, }E
To locate API calls that lead to application crashes our goal is to locate the last instance

of an AI pair (see Section 3.4.1). For the identification of the API methods in the stack

Table 2 Call Types and Definitions

Type Definition

Framework call

When an Android application is launched the Android

framework calls a series of methods before it calls the

application, which in turn calls an entry method such as main().

We name these calls framework calls.

API call

An API call is made when a method of a client application calls

an API method. An API method is a method of a class not

belonging to application packages. We examine calls to three API

types: 1) Android, 2) Java, and 3) third-party.

Application call

An application call can take place between two methods of a

client application or from an API method to a method of the

client application.

Empir Software Eng

traces, we chose not to use the Android reference for two main reasons. First, we would
like to make our method generic and applicable to similar systems for stack trace analysis.
Second, we would like to examine calls to different types of APIs, from Android, Java, and
third-party (see the different stacks in Figs. 4 and 5, in Section 4.2). Then, as we had no a
priori knowledge of the methods that belong to the sets F , A, and I , we used the following
process and heuristics to determine them.

First, we deduced the name space of the Android framework’s methods. We reasoned
that due to the common way in which the Android framework calls the applications, the
corresponding method sequences F+ would appear considerably more often than appli-
cation methods A+. We therefore constructed from the reversed stack traces n-tuples (see
Listing 2) of length 1–15 anchored at the left hand side of the stack trace and determined
their frequency. Each element of the n-tuple was the name of a method. By ordering the n-
tuples by their frequency and looking at the most common ones we manually established
the name space of the Android framework’s methods. For instance, Listing 3 illustrates the
most common 6-tuple.

From this 6-tuple we deduced that the framework calls applications through methods that
belong to the packages dalvik.*, com.android.*, java.*, as well as android.*.
By examining other common n-tuples we ended up including in the framework name
methods from two more package name spaces: com.badlogic.gdx.backends.-
android.* and org.cocos2d.*. These are two game engines that appeared to be
calling application-specific methods.

Then, by stripping from each stack trace the method calls of the Android application
framework (F), we isolated the name space of each application through the first method
that appeared in the stripped-down stack trace. We defined as the application’s methods (A)
those that belonged to the name space defined by the first two dot-separated elements of the
package name (e.g. com.example or org.umlgraph). This allowed for the possibility
of an application using diverse name spaces under a given domain for a single application
at the expense of considering calls to an API developed by the same entity as part of the

Empir Software Eng

Table 3 An application calls an API and crashes

F: Framework dalvik.system.NativeStart.main

com.android.internal.os.ZygoteInit.main

com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run

java.lang.reflect.Method.invoke

java.lang.reflect.Method.invokeNative

android.app.ActivityThread.main

android.os.Looper.loop

android.os.Handler.dispatchMessage

android.app.ActivityThread$H.handleMessage

android.app.ActivityThread.access$600

android.app.ActivityThread.handleLaunchActivity

android.app.ActivityThread.performLaunchActivity

!java.lang.NullPointerException

android.app.Instrumentation.callActivityOnCreate

android.app.Activity.performCreate

A: Application com.example.android.contactmanager.ContactManager.onCreate

I: API android.app.Activity.setContentView

com.android.internal.policy.impl.PhoneWindow.setContentView

com.android.internal.policy.impl.PhoneWindow.setContentView

android.view.ViewGroup.addView

android.view.ViewGroup.addView

android.view.ViewGroup.addViewInner

E: Exception !java.lang.NullPointerException

application (e.g. a call from com.example.GameActivity.onCreate to com.-
example.lib.Proxy.init).

With the knowledge of the application’s name space at hand we searched the stack trace
backwards (from the RHS to the LHS) to determine the first place where an application’s
method called a method that did not belong to its name space (an AI sequence). This was,
by definition, a call to an API method. We searched for the call backwards, to handle cases
where the application registers a callback handler that will later call an API method. In such
a case the problematic call is not the API call used to register the callback handler method,
but the second API call. For instance, in the Listing 4, the interesting API call is that to the
setContentView method, rather than the one to loop.

Finally, from the stack traces we extracted for further analysis signatures representing
the API method (e.g. android.app.Activity.setContentView), the exception
reported by the API method (e.g. android.view.inflateException), and the root
exception that triggered the application crash—the exception at the bottom of the stack (e.g.
java.lang.NullPointerException). Each signature represents a way in which an
API call can fail. Thus, one signature can be associated with many different stack traces
and represents directly their crash cause. We used the signatures in order to simplify our

Empir Software Eng

data set and as a guide for studying the reason of the application failure behind the thrown
exceptions.

We generated the signatures and analyzed the number of their repeated occurrences in
two ways by creating two multisets.

1. A multiset (unique) where each problem signature—as identified by its stack trace—
appears only once. The multiplicity of each signature’s occurrence reflects how many
applications (or distinct parts of an application) were affected by the problem.

2. A multiset (total) of all stack traces reported over the analyzed period, without any
de-duplication applied to them. The multiplicity of each signature’s occurrence reflects
how many users were affected by the problem and to what extent.

3.4 Validation of the Experimental Method

To show that our method in Section 3.3 locates risky API calls, we validated our algorithm
with three experiments based on publicly available software and data.

3.4.1 Identification of Risky API Methods in Real Applications

First we showed that the last AI pair in a stack trace represents a risky API call
(Section 3.3). To prove this, we downloaded application samples from the Android SDK,
built them, and experimented on the included API methods and the produced stack traces.
Specifically, we built and run the application sample ContactManager and we checked
the characteristic Case 3 in Section 3.3.

To prove Case 3 (F ∗A+I+E), we changed the input of the setContentView method
to null (see in the onCreate method of the ContentManager class.) Table 3 shows
a NullPointerException produced by the setContentView method, assuming
that the passed view was missing for some reason. Then, we applied the cleaning method
(Section 3.2) and the method for the location of risky API calls (Section 3.3) to the pro-
duced stack trace, and we indeed located the setContentView method as the root cause
of the crash. Finally, in the Appendix there are examples of our stack traces that match
the remaining cases with API calls (Case 4 and Case 5) from the regular expressions in
Section 3.3.

3.4.2 Verification of the Risky API Methods

We also searched in the source code of the Android API for the methods included in
our signatures. In particular, we downloaded the version 15 of the Android API (lat-
est version with the most stack traces in our sample), parsed the source code using a
simple Java doclet,6 and we extracted documented methods from the Android API. We
took into account the public and protected methods as these methods should be in the
API reference. We found that 96 % Android and 99 % Java methods from our sig-
natures were documented in the Android API reference. This means that our method
indeed found a significant number of Android and Java API methods. However, we were
not able to check all the third-party libraries associated with the Android framework,
except for specific cases such as: com.badlogic.gdx.backends.android.*,

6http://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/doclet/overview.html

http://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/doclet/overview.html

Empir Software Eng

org.cocos2d.* and com.google.android.*. We discuss this limitation in
Section 6.1.

3.4.3 Location of the Extracted Signatures in Public Sources

Finally, we validated our findings by showing that the risky API methods we found
seem to confuse Android developers. For this, we used challenge data from stackover-
flow.com7 and Android issue tracker.8 We downloaded these data sets from the site of
the Mining Software Repositories (MSR) workshop (Bacchelli 2013; Shihab et al. 2012).
Then, we got 6,199 titles of discussion threads from stackoverflow.com and 20,169 titles
from the Android bugs to search for pairs of Android API methods and exceptions.
The location of the Android discussion threads in the stackoverflow.com was trivial,
because of the provided Android tags. In addition, we easily extracted the titles from
all threads as both data sets were in xml format. Then, we isolated from the titles
referred methods and exceptions and we looked for them in our signatures. To extract
the methods and the exceptions from the titles we used the following regular expressions,
respectively:

[a − z] + [A − Z][a − z] + [A − Za − z]∗
[a − zA − Z] + (Exception|Error)

In other to be sure that the methods and the exceptions we identified in our chal-
lenge data exist in the documentation of the Android API, we used the Java doclet and the
documented methods from Section 3.4.2. We found 180 distinct stackoverfow.com meth-
ods that exist in the documentation of the Android API reference. From these methods
133 were in our signatures (74 %). In addition, we found 227 distinct methods from the
Android bugs that are documented in the Android API reference and 122 of these that
exist in our signatures (54 %). Finally, we checked the pairs of methods and exceptions
of both data sets and we compared them with those in our signatures. We found 199
distinct pairs with documented Android methods in stackoverflow.com from which 131
were in our signatures. Also, we identified 21 distinct pairs of methods and exceptions
in Android bugs existed also in the Android API reference and 8 of these were in our
signatures.

3.4.4 Conclusions

In this section, we presented three experiments we conducted for the validation of our
experimental method by using publicly available software and data. First, we explained
why the last AI pair in a stack trace can be associated with a risky API call. Second, we
showed that more than 90 % of the methods of our stack traces were also in the source
code of the Android API (including Java API methods). Finally, we analyzed two data sets
of challenge data and we found that 74 % methods of our signatures also exist in stack-
overflow.com and 54 % in Android bugs. In the next sections, we present the results of
the analysis of our stack traces that stem from a large data set of Android application
crashes.

7http://stackoverflow.com/
8http://code.google.com/p/android/issues/list

http://stackoverflow.com/
http://code.google.com/p/android/issues/list

Empir Software Eng

Table 4 Key metrics of the analyzed data

Elements Total Unique

Stack traces 901,274 101,279

Method calls 16,697,379 193,064

Class names in an Android context 10,693,844 2,207

56.5 % 3.1 %

Class names in an app context 2,712,754 61,379

14.3 % 85.5 %

Class names in an API context 4,192,055 10,349

22.1 % 14.4 %

Class names total 18,928,752 71,771

Method names in an Android context 10,693,844 5,477

60.8 % 4.5 %

Method names in an app context 2,712,754 99,240

15.4 % 82.3 %

Method names in an API context 4,192,055 19,849

23.8 % 16.5 %

API method names 637,246 6,344

3.6 % 5.3 %

Method names total 17,598,653 120,621

Exceptions in Android context methods 355,925 100

26.8 % 21.6 %

Exceptions in app context methods 281,684 230

21.2 % 49.8 %

Exceptions in API context methods 692,490 314

52.1 % 68.0 %

Root cause exceptions 901,274 406

67.8 % 87.9 %

Chained exceptions 726,655 316

54.6 % 68.4 %

Exceptions total 1,330,099 462

4 Results and Analysis

Our findings can be analyzed at two levels. At a primary level we can observe common
problematic API methods, reported exceptions, and exception chaining practices. Analyzing
further our data we want to see why these crashes occur: what particular API design problems
caused the software crashes we observed?

Empir Software Eng

4.1 Primary Observations

Key metrics regarding the stack traces we analyzed appear in Table 4. The left-column
metrics measure each value’s occurrence within the stack traces (total), while the right-
column ones measure the unique occurrences of a value—a class, method, or exception
name. As a particular value can occur in multiple layers this column’s percentages can add
to more than 100 %.

In total we analyzed almost 900 thousand stack traces containing 16.7 million method
calls from 120 thousand methods and more than one million exceptions. An exception’s
stack trace contains on average 19 method calls, a sign of a complex layered architec-
ture. On average each stack trace appears in our data set six times, but behind this average
lies a very uneven distribution. From the analyzed stack traces (total) we found a half
million (531,432) with API methods and exceptions associated with the Android frame-
work. The first four most common entries appear 17,074, 12,637, 10,864, and 9,100
times, whereas the entry at the 75 % quartile appears three times, and the one at the 50
% quartile just one time. Figure 3 shows the distribution of the signature frequencies.
After the top 600 signatures the frequencies decrease significantly and the correspond-
ing crashes are associated either with less commonly used methods or with programming
errors.

4.1.1 Observation 1: Distribution of Method and Class Names

By applying the techniques we described in Section 3.3 we were able to separate classes,
methods, calls, and exceptions among the Android framework, the applications, and diverse
APIs. As expected, most of the unique method names (82.3 %) appear in the application con-
text, mirroring the large relative size of the application code. The next most common set of
unique method names are those corresponding to API implementation (16.5 %), again illus-
trating that the API implementation is richer than the part of the framework that launches

 1

 10

 100

 1000

 10000

1 10 100 1000 10000

F
re

qu
en

ci
es

Rankings

Signatures

Fig. 3 Distribution (log scale) of the ranked signatures (total frequencies)

Empir Software Eng

Table 5 Total number and % of method calls among layers

From / To Android app API

Android 9,829,209 755,465 10,314

58.9 % 4.5 % 0.1 %

app 0 1,812,243 637,246

0.0 % 10.9 % 3.8 %

API 0 108,474 3,544,428

0.0 % 0.6 % 21.2 %

and calls the applications, whose unique methods correspond to 4.5 % of the total. (We
regard a call from the application to a framework function as an API call.) We located
6,344 unique API method names, indicating an average API call depth of three in our data
set. The distribution of method names among the total (non de-duplicated) stack traces is
completely different from the unique ones having 60.8 % of the names appearing in the
Android framework, 15.4 % in the application, and 23.8 % in the API layer. This illustrates
the common and deep Android origin of all stack traces and the relatively shallow call paths
along the application and API levels. Class names are distributed similarly to method names,
showing that the correspondence of methods to classes is comparable among the three
layers.

4.1.2 Observation 2: Distribution of Exceptions

The most interesting part of our key metrics concerns the exceptions. Most exceptions
(52.1 %) appear at the context of API methods indicating that there is a lot of value
associated with improving the stability of API calls. Furthermore, the very small num-
ber of API method names associated with these exceptions (3.6 %) further increases the
value that can be gained through a better design of these interfaces. The second most
common site of exceptions is Android’s framework, showing that the framework’s devel-
opers can do a lot to improve the stability of the applications running under it. Finally,
exceptions directly within an application account for 21.2 % of the total number of
exceptions.

4.1.3 Observation 3: Categorization of Calls Among Layers

The categorization of calls appearing within the analyzed stack traces across the three
layers appears in Table 5. These represent a summarized run-time version of the call
graph, according to the observed calls. It is apparent that most of the activity happens
within the layers (along the Table’s diagonal), with Android doing most of the heavy lift-
ing (58.9 % of the calls). The application to API calls represent 4.5 % of the observed
calls.

The unique number of method calls in Table 6, represent a static version of the call graph,
which corresponds to the implementation structure of the code running on Android phones.
Here most interactions are within applications (37.5 %), with calls from application to API

methods representing the second highest percentage (22.3 %) indicating the importance of
API methods in an application’s operation.

Empir Software Eng

Table 6 Unique number and % of method calls among layers

From / To Android app API

Android 9,059 38,986 105

4.6 % 19.7 % 0.1 %

app 0 74,160 44,127

0.0 % 37.5 % 22.3 %

API 0 5,585 25,955

0.0 % 2.8 % 13.1 %

Table 7 Top ten API-reported exceptions

Exception %

java.lang.RuntimeException 31.6

java.lang.OutOfMemoryError 12.2

java.lang.NullPointerException 7.5

java.lang.IllegalArgumentException 6.9

java.lang.IllegalStateException 3.9

android.view.WindowManager$BadTokenException 3.4

android.view.InflateException 2.9

java.io.FileNotFoundException 2.2

android.database.sqlite.SQLiteException 1.9

android.content.ActivityNotFoundException 1.8

Total 74.4

Table 8 Top ten chained exception causes

Reported exception Root exception %

java.lang.RuntimeException java.lang.OutOfMemoryError 20.2

java.lang.RuntimeException java.lang.NullPointerException 16.7

java.lang.RuntimeException java.lang.IllegalArgumentException 7.1

android.view.InflateException java.lang.OutOfMemoryError 6.9

java.lang.RuntimeException android.database.sqlite.SQLiteException 5.9

java.lang.RuntimeException java.lang.IllegalStateException 3.6

java.lang.RuntimeException android.os.DeadObjectException 2.5

java.lang.RuntimeException android.database.sqlite.SQLiteDiskIOException 2.2

java.lang.RuntimeException android.content.res.Resources$NotFoundException 1.7

java.lang.RuntimeException java.lang.SecurityException 1.6

Total 68.3

Empir Software Eng

Table 9 Top ten root cause exceptions

Exception %

java.lang.NullPointerException 29.2

java.lang.OutOfMemoryError 14.2
java.lang.IllegalArgumentException 6.6
java.lang.RuntimeException 4.5

java.lang.IllegalStateException 4.1

android.view.WindowManager$BadTokenException 2.6

android.database.sqlite.SQLiteException 2.6

java.lang.IndexOutOfBoundsException 2.1

java.lang.ArrayIndexOutOfBoundsException 1.9

java.io.FileNotFoundException 1.7

Total 69.5

4.1.4 Observation 4: Top API Method Exceptions

The exceptions that the API methods report to applications (Table 7) tell a sad story. One
third of the exceptions are of the most generic kind (RuntimeException), which surely
doesn’t help a developer get to grips with the exception’s cause. This is further illustrated
in Table 8, where in most cases diverse API failures appear to be propagated up as a
RuntimeException.

4.1.5 Observation 5: Top Root Exceptions

Looking behind the scenes at the root exceptions behind the application crashes (Table 9),
we see that 29.2 % of the crashes occur due to erroneous object reference handling, throwing
NullPointerException. Also, memory handling in Android’s applications is causing
a great percentage of problems (14.2 %), throwing OutOfMemoryError.

4.1.6 Observation 6: Top API Methods and Crashes

In Table 10 we can see that just 10 API calls result in 16.7 % of the crashes. Finally, Table 11
shows the most popular API methods. We see that there are methods with thousands of
calling methods, which indicates that improvements to the design of these API methods will
benefit many applications.

4.2 Crash Cause Categories

In this section, we present a categorization for the most popular causes of Android applica-
tion crashes. For this, we analyzed signatures from stack traces and tried to identify major
groups of crash causes according to the following process.

1. Using the method we described in Section 3.3, we located 11,277 signatures
with API methods. From these signatures we found 328 with invalid exceptions
(UnknownException). The located signatures came from 531,432 total and 65,425
unique stack traces; the remaining stack traces were associated with application-
specific methods and exceptions.

Empir Software Eng

Table 10 Top ten API method crashes

API method Reported exception %

android.app.Activity.- java.lang.RuntimeException 4.3

setContentView

android.app.Dialog.dismiss java.lang.IllegalArgumentException 2.2

android.view.LayoutInflater.- android.view.InflateException 1.6

inflate

android.app.Activity.- android.content.ActivityNotFoundException 1.5

startActivity

android.graphics.- java.lang.OutOfMemoryError 1.4

BitmapFactory.-

decodeResource

android.app.Dialog.show android.view.WindowManager$BadTokenException 1.4

com.android.internal.view.- java.lang.IllegalArgumentException 1.1

BaseSurfaceHolder.-

unlockCanvasAndPost

android.graphics.Bitmap.- java.lang.OutOfMemoryError 1.1

createBitmap

java.util.ArrayList.get java.lang.IndexOutOfBoundsException 1.1

android.view.LayoutInflater.- java.lang.RuntimeException 1.0

inflate

Total 16.7

2. We sorted the 11,277 signatures based on their total number of occurrences and we
divided the sample into three subgroups depending on the packages of the included
API methods, namely: (com.)android.*, java.*, and com.*. We created these

Table 11 Top ten API methods with the most callers

Method # callers

android.app.Activity.setContentView 2,112

android.app.Activity.startActivity 1,450

android.view.LayoutInflater.inflate 1,205

android.app.Dialog.show 1,187

java.util.ArrayList.get 1,101

android.app.Dialog.dismiss 1,061

android.os.AsyncTask.execute 552

android.graphics.Bitmap.createBitmap 525

android.app.Activity.showDialog 483

android.content.res.Resources.getDrawable 457

Empir Software Eng

Fig. 4 Causes of API-related crashes (total occurrences)

subgroups in order to compare APIs from different sources—but associated with the
same framework—and generalize our results.

3. For each subgroup, we examined the participated signatures, trying to understand
the crash causes of the associated stack traces. According to Sullivan and Chillarege
(1991); and Ganapathi et al. (2006) though, the identification of root causes in soft-
ware crashes is not as straightforward as in bugs. This occurs because the source
code of the crashed software is not always available and we cannot guess all the
environment parameters that probably contributed to a crash. In our case, for the
majority of the stack traces we were able to find the crash causes only from the
names of the exceptions (e.g. OutOfMemoryError refers to memory exhaustion).
However, a significant number of the signatures had generic unchecked exceptions
(see Table 1 and Section 4.2.8), which made the crash causes unclear. For these
signatures, we studied the Android API reference,9 and consulted Q&A sites, such as
stackoverflow.com.

4. Knowing the crash causes for all signatures, we grouped them in representative crash
cause classes. As we had no previous knowledge of these classes, we concluded on
them, gradually, as we were studying the signatures. Figure 4 shows the categories for
the total instances and Fig. 5 for the unique instances of the stack traces. As we can
see, the distribution of the signatures among the subgroups and categories are similar
for both diagrams.

Thus, we mapped the space of the main reasons that application failures occur on mobile
devices that run on the Android platform. In Section 6, we present threats to validity regard-
ing our sample. In the following, we discuss each crash category giving examples from
representative signatures allocated to them (see Table 12). In particular, Table 12 shows
examples from signatures and their frequencies in the total and unique samples. Finally,
we discuss our findings for the three subgroups of the APIs: Android, Java, and third-party
libraries. In the Appendix we illustrate the distributions of the signatures for each of the
examined APIs.

9http://developer.android.com/guide/components/index.html

http://developer.android.com/guide/components/index.html

Empir Software Eng

Fig. 5 Causes of API-related crashes (unique occurrences)

4.2.1 Memory Exhaustion (ME)

We found that the most common application crash cause is related to memory leaks. This is
complementary to the findings of Tan et al. (2013). This was a result we expected, as most
mobile devices have constrained memory and developers are seldom aware of the amount
of the available memory. Both diagrams in Figs. 4 and 5 show that memory exhaustion
is the dominant crash cause (almost 30 %) in Android APIs. This percentage is similar to
the findings of Sullivan and Chillarege (1991) and close to the results of Tan et al. (2013).
The latter imply that memory bugs is a leading root cause in crashes (greater than 38 %).
The allocation of signatures to this category was straightforward, as the presence of the
OutOfMemoryError helps one to distinguish those related to memory exhaustion. Exam-
ples 1 and 2, in Table 12, are characteristic of this category. The first example is related to a
failed import operation for a bitmap object and the second to a failed attempt to load many
bitmap objects at once.

4.2.2 Race Condition or Deadlock (SYNC)

The second most common cause of application crashes is associated with race conditions
and deadlocks. Again, we found that this cause of crash is the top (27 %) in Android APIs.
In addition, we found that Java APIs count a significant number (20 %) of such crashes,
possibly because many developers use Java threads wrongly. As Android is not an appli-
cation, but a device that hosts applications, our findings agree with the results of Tan et al.
(2013) for the Linux kernel and the significance of concurrency bugs in operating systems.
We identified the signatures for this category based on the types of their exceptions and the
associated API documentation. There are many types of synchronization problems; this cat-
egory contains signatures from Table 12 related to: a. database deadlocks (example 3), b.
race conditions in asynchronous tasks (example 4), c. abnormal execution of the lifecycle
of an activity (example 5), and d. synchronization issues with iterators (example 6).

4.2.3 Missing or Corrupt Resource (MR)

A great number of crashes occur because of missing or corrupt resources. In this category,
we have added signatures that imply the absence of a resource or the inability of the sys-
tem to decode a resource. In particular, we refer to external resources, such as an image

Empir Software Eng

Table 12 Signatures

Method Total Unique

Application Exception

Root Exception

1 android.view.LayoutInflater.inflate 10,864 1,635

android.view.InflateException

java.lang.OutOfMemoryError

2 android.view.View.setBackgroundResource 1,400 370

java.lang.OutOfMemoryError

java.lang.OutOfMemoryError

3 android.database.sqlite.SQLiteOpenHelper.getReadableDatabase 1,640 188

android.database.sqlite.SQLiteDatabaseLockedException

android.database.sqlite.SQLiteDatabaseLockedException

4 android.os.AsyncTask.execute 1,561 236

java.util.concurrent.RejectedExecutionException

java.util.concurrent.RejectedExecutionException

5 android.app.Dialog.dismiss 12,637 1,280

java.lang.IllegalArgumentException

java.lang.IllegalArgumentException

6 java.util.ArrayList$ArrayListIterator.next 2,218 196

java.util.ConcurrentModificationException

java.util.ConcurrentModificationException

7 org.jaudiotagger.audio.AudioFileIO.read 4,799 70

org.jaudiotagger.audio.exceptions.InvalidAudioFrameException

org.jaudiotagger.audio.exceptions.InvalidAudioFrameException

8 android.app.Activity.setContentView 2,760 390

android.view.InflateException

java.lang.NullPointerException

9 android.app.Activity.startActivity 9,100 1,453

android.content.ActivityNotFoundException

android.content.ActivityNotFoundException

10 java.util.ArrayList.get 7,626 1,276

java.lang.IndexOutOfBoundsException

java.lang.IndexOutOfBoundsException

Empir Software Eng

Table 12 (continued)

Method Total Unique

Application Exception

Root Exception

11 android.app.Activity.startActivity 1,872 46

java.lang.SecurityException

java.lang.SecurityException

12 com.google.api.services.tasks.Tasks$Tasklists$Get.execute 115 11

javax.net.ssl.SSLException

javax.net.ssl.SSLException

13 java.text.DateFormat.parse 149 12

java.text.ParseException

java.text.ParseException

14 android.database.sqlite.SQLiteDatabase.execSQL 1,642 219

android.database.sqlite.SQLiteException

android.database.sqlite.SQLiteException

15 org.apache.http.impl.client.AbstractHttpClient.execute 659 32

org.apache.http.conn.ConnectTimeoutException

org.apache.http.conn.ConnectTimeoutException

16 android.hardware.Camera.open 3,862 144

java.lang.RuntimeException

java.lang.RuntimeException

17 android.content.ContentResolver.insert 314 18

android.database.sqlite.SQLiteException

android.database.sqlite.SQLiteException

18 android.graphics.Canvas.drawBitmap 628 79

java.lang.NullPointerException

java.lang.NullPointerException

or an audio file. We found many of such problems mainly in Android and third-party APIs
(20 % for each). In Table 12, examples 7 and 8 are representative of this category. The names
of the exceptions, however, do not indicate, clearly, resource problems. We concluded that
such signatures belong in this category, by examining their stack traces, the documentation
of the exceptions, and posts in stackoverflow.com. In this category, we have also allocated
signatures that indicate crashes due to either undeclared components or the system’s failure
to locate a suitable component for a specific task. It was easy for us to identify such signa-
tures, as the Android’s API provides characteristic exceptions for components, such as the

Empir Software Eng

ActivityNotFoundException. For instance, consider example 9, in Table 12. There
are two possible reasons behind this crash: either the developer has forgotten to declare the
activity in the AndroidManifest.xml file or the developer does not call the component
with the right identifier.

4.2.4 Indexing Problem (IND)

Crashes due to indexing problems can be caused by invalid loop conditions and inappro-
priate structures. As it was expected this crash cause is dominant (almost 40 %) in Java
APIs, because of the common use of Java packages (java.lang.*, java.util.*) for
the manipulation of data structures. Example 10 in Table 12 shows a signature from such a
crash.

4.2.5 Insufficient Permission (SEC)

Here, we have mainly allocated signatures with security exceptions. We found security
issues mainly in Android and third-party APIs. For instance, consider the representative
example 11 in Table 12. This example reflects that there is an activity permission problem
in the AndroidManifest.xml file. Because of this problem, the activity cannot start, as
the Intent object, which should be passed to the system, has not got the right permissions
(e.g. for another device to be eligible to receive a message.) Also, consider example 12 in
Table 12 from a third-party API and a failed attempt of a service to open due to a security
reason. We assume that insufficient documentation could be a main problem for the above
examples (see also example 16 in Table 12 and Section 4.2.8).

4.2.6 Invalid Format or Syntax (FORM)

This category refers to crashes due to erroneous method inputs and their number is signif-
icant (17 %) in Java APIs. Considering that many of such crashes were caused by typos
and careless programming, the above result matches a similar finding (15 %) of Tan et al.
(2013). Specifically, the signatures that belong here imply format problems and invalid syn-
tax of SQL queries. For instance, the exceptions of example 13 in Table 12 indicate that the
crash caused either because the input value was null or the format of the input was invalid.
In addition, the exceptions of example 14 in Table 12 shows that the signature is related to
wrong SQL query syntax.

4.2.7 Connectivity Problems (CON)

In this category, we have allocated signatures associated with networking exceptions, such
as the ConnectTimeoutException. These problems appear especially in third-party
libraries (10-20 %) concerning the connectivity with external directories and services. In
example 15 (Table 12), this exception reflects a timeout, while connecting to an HTTP server,
which sends a null message.

4.2.8 Unclassified (U)

Signatures that belong to this category do not give clear information about the real causes
of their crashes. Such cases were especially common in Android and third-party APIs (10-
15 %), meaning that they have a lot of undocumented exceptions. In the following, we

Empir Software Eng

present some examples to make our argument evident. In Table 12, example 16 reflects a
crash where the camera cannot be opened. This occurs either because another application is
using the camera or because the application has not got the permission to use the camera.
However, the unchecked RuntimeException is generic for one to understand whether
the crash cause is a race condition or an insufficient permission. Likewise, in example 17
(Table 12), which is related to a database issue, the exceptions (SQLiteException) do
not reveal the real crash cause. There may be several reasons behind this crash. There would
be an invalid insert statement, a synchronization, or a connectivity problem. Finally, in
example 18 (Table 12), it is unclear whether the exception (NullPointerException)
was thrown because of a race condition (device orientation change) or a missing resource
(careless declaration).

5 Crash Mitigating Recommendations for APIs, Tools, and Frameworks

In this section, we present an overview of API recommendations, development tools, and
frameworks that can improve APIs’ design and implementation and help developers to avoid
application crashes. The mentioned crashes are associated with the categories in Section 4.2.
API recommendations refer to API design and implementation choices. The suggested tools
refer to ad-hoc software that developers can use, during implementation, to test their appli-
cations. Finally, we present some execution platform and framework designs that can be
used to protect the running applications from unexpected crashes.

5.1 API Recommendations

Here, we discuss indicative API recommendations that could solve problems associated
with the crash categories listed in Section 4.2. These decisions refer to the design of the
interfaces and their implementation. We base these API recommendations on a qualitative
study. Specifically, we examined the signatures of our sample, we looked at related parts
in the Android API reference, and made suggestions based on our experience after iterative
discussions. For the presentation of our suggestions, we use as a reference the representative
signatures of Table 12 and the observations of Section 4.1. Finally, we provide the frequen-
cies of the representative signatures to show how many crashes could be avoided based on
the following solutions.

5.1.1 Memory Exhaustion

As we mentioned in Section 4.2, common crash causes in mobile software are related to
memory exhaustion (also consider the OutOfMemoryError in the tables of Observation
4, Observation 5, and Observation 6.) A representative example of such crashes involves the
case when a resource cannot fit in the available memory (see the example 1, in Table 12).
In particular, consider the process of loading a new file into memory. Often developers
have to load a resource before decoding it. Therefore, they are responsible to decide, in
advance, for the size of the resource (e.g. an image’s resolution). Most of the times though,
developers have scant information regarding the available memory (Yang et al. 2004).
Thus, it is possible for the memory to be exhausted. To avoid these problems, the system
itself could check and tailor the size of the resources to be loaded. Therefore, the API

could provide a resource auto-resize interface—consider image compressive sampling
(Candes and Wakin 2008).

Empir Software Eng

Things become complicated when developers have to load more than one memory con-
suming object at once (example 2, in Table 12); this is often the case when they build
the GUI, which consists of many associated bitmaps, and it needs recycling and reloading
quite often. In such cases, developers can use structures, which operate as caches (e.g. the
Android’s LruCache). As we argue, however, below, this choice has some drawbacks.

Cache structures may accelerate the access to recently used objects, but increase con-
sumption memory. Consequently, the API should not support cache structures of an arbitrary
size but restricted cache structures. In addition, this problem can be solved through the
use of appropriate algorithms by the garbage collector (Bond and McKinley 2008).

Furthermore, some file formats, especially for images, may require a lot of memory,
when they are uncompressed, being susceptible to memory leaks. There are, however, less
memory consuming formats one can use instead. For instance, vector graphics (.svg) can
be lighter than bitmap image files (.png, .jpg) (Vaughan-Nichols 2001). Hence, it would
be beneficial for a system if its API includes memory efficient file formats. Ultimately, the
system itself could automatically convert expensive formats into memory efficient ones—
when it is necessary. Nevertheless, some devices cannot support particular formats yet; see
Table 2 in Gavalas and Economou (2011).

Finally, the over allocation of heap memory, for a particular process, can result in out
of memory errors. When the system allows developers to increase the heap memory—as
Android does with android:largeHeap=“true”—they will burden the memory quite often.
Consequently, the system itself—not the developer—should decide when there is a need for
extra heap memory (fixed heap memory).

5.1.2 Race Condition or Deadlock

According to our categorization in Section 4.2, synchronization problems are common
causes of application crashes in mobile software. This is also obvious from the rankings
of relevant exceptions (IllegalStateException, BadTokenException) in the
tables of Observation 4, Observation 5, and Observation 6. These results are reasonable
as developers can easily misstep when building multithreading applications. Therefore,
systems themselves should provide functional APIs that prevent developers from writing
error-prone programs.

In order to avoid deadlocks, the APIs should give developers the capability to write
non-blocking algorithms (Michael and Scott 1996); as Intel does with the thread building
blocks (Pheatt 2008). These algorithms are not based on locks (synchronized methods,
such as in example 6, in Table 12), but on atomic hardware primitives and generic algo-
rithms; consider the compare-and-swap by Valois (1995). This is particularly important in
mobile applications where the main thread (GUI) should response instantaneously to events
triggered by the user and device orientation changes (see example 5, in Table 12.)

Keeping the main thread lock-free is useful for two reasons: to isolate long-lasting
operations (see example 3 in Table 12), and to shield the main thread against an abnor-
mal sequence of events. Android, for instance, promotes an API design—AsyncTask
class—that keeps the main thread lock-free (“Single thread model”).10

Finally, in order to keep the interactions with the main thread under control (see example
4 in Table 12) and the execution of the events in a sequence, the API can provide a non-
blocking buffer mechanism (Kim 2006).

10http://developer.android.com/guide/components/processes-and-threads.html

http://developer.android.com/guide/components/processes-and-threads.html

Empir Software Eng

5.1.3 Missing or Corrupt Resource

Application crashes can occur when the system is unable to process a specified resource
(image, audio file, even a class), because it is missing or corrupt resource. A practical
way to avoid such crashes is the adoption of default resources by the API. For instance,
when a screen background layout is missing or corrupt (see example 8, in Table 12 and
InflateException in Observation 6, Table 10), the system can open the default one.
In addition, specific exceptions associated with specific missing resources can help devel-
opers to locate, directly, the problematic resources. More importantly, the API design can
force the statically checked binding of resources with an application. Then, the application
will refuse to crash when the resources are missing or corrupt.

Also, to limit the number of crashes because of flawed declaration of application compo-
nents (see example 9, in Table 12 and ActivityNotFoundException in Observation
6, Table 10) the API can provide appropriate type checking of resources and meaningful
component codes. For instance, in Android, to start a new activity, the programmer has to
use an Intent object, by providing either a known component identifier or a description
of a task to be accomplished. When the description is provided, the system is responsible
to choose by itself the most suitable component for that task. If the system fails to find it, it
crashes. However, type checking can ensure the existence of an activity intent before exe-
cution. The association with type component identifiers can, also, prevent developers from
the careless use of component identifiers.

5.1.4 Indexing Problem

To decrease the number of indexing problems (consider the percentages of the root
IndexOutOfBoundsException in Observation 5), the API can provide structures with
error-free arguments and appropriate error handling.

Error-free arguments imply iterators instead of integer indices and implicit loops.
Error ignorance, also, is an API design that can allow the system to ignore specific

errors. For instance, when the threshold of a condition, in a loop, is greater than the number
of the elements in an array, the system does not need to throw an out of bounds exception.

Finally, in order to avoid possible indexing problems with database cursors, the API can
establish a bound for the number of the rows that will return from the database.

5.1.5 Invalid Format or Syntax

Many crash causes occur because of trivial errors in the format or syntax of method
arguments (see example 13 and 14, in Table 12).

To decrease the number of crashes due to an invalid query syntax, the API can include an
interface for queries on collections. An example of such an interface is LINQ (Meijer et al.
2006). Also, the API should use domain specific data types (Mernik et al. 2005) rather than
primitive ones or string, as the former offer more possibilities for static checking.

5.1.6 Insufficient Permission

The system itself should check (through an Intent object) if a given permission is valid or
not, and throw specific exceptions. For instance, example 16, in Table 12 can refer to a crash
because of a missing permission regarding the opening of the camera by an application.
However, the thrown exception (RuntimeException) is generic for one to understand

Empir Software Eng

the cause of the crash and fix the problem. Also, in Android, the system could inform the
programmer about missing permissions, on the fly, when he or she declares new components
into the AndroidManifest.xml file (see example 11, in Table 12).

5.1.7 Connectivity Problem

To eliminate crashes related to connectivity problems (see example 15, in Table 12) the
system apart from throwing exceptions can, also, provide the user with a user menu for
next actions, such as: 1) wait, 2) choose a new network provider, 3) pause the application,
4) terminate the application. Then, the user has to choose one of these options, and the
system can proceed accordingly. Another possible solution for avoiding problems due to
connectivity errors includes postings from the system regarding the network’s connectivity.

5.1.8 Unclassified

As we mentioned in Section 4.2.8, generic unchecked exceptions do not help developers to
understand directly what the cause behind a crash is. According to Henning (2009), a well-
designed API should provide clear information about each method and relevant explanations
for the exceptions that can occur. However as the tables of Observation 4 show, one third of
the API exceptions in our signatures had generic exceptions (RuntimeException). Con-
sequently, the API should use specific exceptions depending on the problem and provide
documentation with related examples.

5.2 Development Tools

In this section, we present an overview of tools that developers can use during the implemen-
tation of an application to avoid API-related crashes. Specifically, such profiling, testing,
and static checking tools can locate programming errors (fault localization) and avert com-
mon application crashes (fault prevention). Searching in the bibliography, we focused on
tools dedicated to Android software. We consider the use of such tools significant, before
the release of an application, as in many cases performance issues related to resource man-
agement (e.g. memory and concurrency issues) are not documented in the API reference to
inform developers in advance. In the following sections, we present a short survey of tools
that can prevent the crashes in the corresponding classes of Section 4.2.

5.2.1 Profiling Tools

Profiling tools can support memory, process, and network traffic analysis. In the following,
we have categorized such tools based on the analysis they conduct.

Memory analyzers give a picture of the allocated objects into the heap, over a period of
time, and find memory exhaustion problems. For instance, consider: the Tracker tab (pro-
vided by the Dalvik Debug Monitor Server— DDMS),11 the AMOS (Seo et al. 2011) runtime
memory fault detection tool, the Eclipse Memory Analyzer (MAT),12 and the JHat.13 Also,

11http://developer.android.com/tools/debugging/ddms.html
12http://www.eclipse.org/mat/
13http://docs.oracle.com/javase/6/docs/technotes/tools/share/jhat.html

http://developer.android.com/tools/debugging/ddms.html
http://www.eclipse.org/mat/
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jhat.html

Empir Software Eng

there are tools that visualize the memory consumption of Java applications, such as the
Heapviz that helps developers to navigate large, pointer-based data structures (Aftandilian
et al. 2010) and the Eclipse plug-in by Alsallakh et al. (2012) that supports the visualization
of arrays and collections during debugging (for the identification of indexing problems).

Thread debuggers are execution log viewers that identify race conditions and deadlocks.
For example, consider: Traceview14 (comes with the DDMS) and Systrace,15 as well as
JProfiler,16 Optimizeit17 and Jinsight.18 The latter tools provide a visual representation of
the virtual machine and show the garbage collector’s activity. They can locate both memory
exhaustion and synchronization problems.

Network analyzers identify and analyze connectivity problems. For instance, Android
provides a network traffic tool and a tool for tracking the network state changes. Both tools
are included into the DDMS.19 Also, Netflix’s Chaos Monkey,20 is a cloud testing tool, for
implementing resilient services on the cloud, as well as the FSaaS method (Faghri et al.
2012).

5.2.2 Testing Tools

Apart from the JUnit framework,21 developers can use tools for testing and verification to
identify race conditions and deadlocks.

GUI testing is associated with several types of tools for the identification of synchro-
nization problems. There are tools based on regression testing (production of streams of
pseudo-random user events) such as “Monkey”22 and A2T 2 (Amalfitano et al. 2011, 2012).
There are also other tools based on computer vision, such as the Sikuli testing tool (Chang
et al. 2010).

Runtime verification is useful for locating deadlocks. A well-known model checking
tool is the Java PathFinder (Havelund and Pressburger 2000). For Android applications,
there is the JPF-Android tool, which is based on the Java PathFinder (van der Merwe
et al. 2012). Another tool for monitoring the execution of Java programs, is the Java
PathExplorer (Havelund and Roşu 2004). Finally, there are tools that can test particular
inputs (concolic testing and constraint satisfaction), such as: ConAn (Long et al. 2003),
jCUTE (Sen and Agha 2006), and LCT (Kähkönen et al. 2011).

5.2.3 Static Checking Tools

Static checking examines the source code without program execution. Thus, developers
can use automated tools to check the quality of their applications before execution. In the

14http://developer.android.com/tools/debugging/debugging-tracing.html
15http://developer.android.com/tools/help/systrace.html
16http://www.ej-technologies.com/products/jprofiler/overview.html
17http://docs.oracle.com/cd/E19830-01/819-4721/beafp/index.html
18http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/jinsightlive.html
19http://tools.android.com/recent/detailednetworkusageinddms
20http://www.linuxinsider.com/story/75780.html
21http://junit.org/
22http://developer.android.com/tools/help/monkeyrunner concepts.html

http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/help/systrace.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://docs.oracle.com/cd/E19830-01/819-4721/beafp/index.html
http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/jinsightlive.html
http://tools.android.com/recent/detailednetworkusageinddms
http://www.linuxinsider.com/story/75780.html
http://junit.org/
http://developer.android.com/tools/help/monkeyrunner_concepts.html

Empir Software Eng

following, we present static checking tools that can detect problems related to several API

crash categories (see Section 4.2).
Static deadlock detectors can identify race conditions and deadlocks. Dimmunix (Jula

et al. 2008, 2011) is such a tool for Android applications. Also, RacerX (Engler and Ashcraft
2003), Jlint (Artho and Biere 2001), and EPAJ (Agarwal et al. 2006)

Static code analyzers test applications from many different angles. FindBugs can detect
more than 300 coding errors, such as null pointer problems, array overflows, and bad name
conventions (Hovemeyer and Pugh 2004; Ayewah et al. 2008). Moreover, Julia, which is
a static analyzer for Android applications, checks equality, class casts, bad programming
styles, dead code, method redefinitions, nullness, and code termination (Payet and Spoto
2012). Especially through nullness analysis, developers can avoid inflate exceptions (thrown
due to missing or corrupt resources) related to the declared resources (e.g. layouts) in the
XML file, namely. The Android lint tool23 also lets developers analyze XML files, and find
inefficiencies in the hierarchy of the GUIViews.

Code snippets are blocks of reusable source code. As APIs tend to be complex, some-
times it is hard for the developers to understand them and find quickly appropriate code
snippets. Prospector is a plug-in for Eclipse that assists developers to find the features they
are looking for (Mandelin et al. 2005). Such tools can help developers to choose the right
interfaces for implementation and, consequently, prevent applications from crashes. In addi-
tion, MAPO is a searching tool for code snippets that uses API methods of interest, which
can help programmers to reduce coding bugs (Xie and Pei 2006).

5.3 Execution Platforms and Frameworks

Given the categories in Section 4.2, we searched for execution platform and framework
designs that can make a system resistant to crashes. The crashes we mention, here, are
related to our two top categories: memory exhaustion and race conditions and deadlocks. In
the following, we present frameworks associated with the Android platform. However, the
highlighted techniques can be adopted by similar systems.

5.3.1 Process Management

Process management depends on techniques and algorithms that an operating system uses.
Some platforms and frameworks, however, can get a system’s capabilities beyond the
conventional and shield applications from crashes. The Aciom framework, for instance,
identifies application I/O requests according with their criticalness and applies request pri-
orities (Kim et al. 2011b). Thus, it can prevent time-sensitive applications from delays,
averting the system from race condition or deadlock crashes. In addition, the platform
of Chen et al. (2011), which is based on remote resource management, can make
applications require less memory and resources. Hence, it can eliminate the well-known
“non-responsive” exceptions in Android. MetaService also is an interface that can enable
the object transferring between Android applications and abolish the need for object pro-
cessing (marshaling/unmarshaling) and replication (Choe et al. 2011). Thus, it can help

23http://developer.android.com/tools/help/lint.html

http://developer.android.com/tools/help/lint.html

Empir Software Eng

avoid crashes due to race condition or deadlock and memory exhaustion. Finally, the capa-
bilities of hosted operating systems can be improved by tuning. See common techniques in
the work of Bovet and Cesati (2005), regarding: prioritization, scheduling, freezing, and
swapping. Process virtual machines, also, may need tuning (Schoeberl 2004; Maia et al.
2010) to satisfy the requirements of the running applications (real-time responsiveness).

5.3.2 Memory Management

To avoid memory exhaustion, constrained systems should use the heap space effi-
ciently (Panda et al. 2001). This is feasible with the use of appropriate memory management
techniques and garbage collection algorithms. To keep small heaps under control and avoid
fragmentation (Bacon et al. 2004), a garbage collector should perform compaction (Maia
et al. 2010). For instance, consider the “mark-compact” garbage collector of Chen et al.
(2003), which is based on object compression and lazy allocation management. An
automatic heap-sizing algorithm can be also used by garbage collectors to determine
a priori the appropriate heap size, and minimize paging problems (Yang et al. 2004).
Memory capacity can be also increased through efficient software-based RAM compres-
sion (Yang et al. 2010). In addition, as multimedia applications make significant use
of arrays, it is necessary for systems to manipulate them efficiently. For this, Fraboulet
et al. (2001) have developed an optimal algorithm to reduce the use of temporary arrays
(LruCache collection in Android). They used a technique called “loop fusion” (McKinley
et al. 1996). Finally, according to Schoeberl (2004), designers of constrained embedded
systems should pay attention on the memory that the libraries consume (e.g. Android’s
Zygote). This is important in order to leave more memory to the applications. Thus, the
use of lightweight and compact hosted systems can help avoid out of memory crashes.

6 Threats to Validity

The possible limitations of our study’s empirical results (the crash causes we identified and
the recommendations we proposed) concern: a) internal validity i.e. whether the results are
valid per se, and b) external validity i.e. whether the results apply to other platforms and
frameworks.

6.1 Internal Validity

As we had no a priori knowledge of the methods that belong to the Android framework, we
used heuristics to determine them (see Section 3.3). Briefly, we isolated n-tuples (that con-
sist of method names) from stack traces and determined their frequency. Then, by ordering
the n-tuples based on their frequency, we found the most common ones and established the
name space of the Android framework’s methods. In addition, we examined manually other
common n-tuples to find application-specific methods, and this possibly implies a selection
bias. Thus, although we identified the Android framework’s methods that are used to call
applications, we may have missed the less common ones, especially from third-party libraries.

6.2 External Validity

External validity aims to ensure that the findings of our empirical study can be generalized
for other samples too. This, however, can be achieved only through the replication of our

Empir Software Eng

study on different samples from Android, as well as other similar platforms. We believe,
though, that our findings are representative for a large population for a number of reasons.

A first threat to external validity might be that for another platform (e.g. iOS or Win-
dows Mobile) our categories would be different. Nevertheless, there are three reasons for
which our results can be generalized: 1) the large amount of the crashes and applications we
examined, 2) the significant diversity of the devices that the Android platform runs on, and
3) the extent of the Android’s API. Finally, our categories refer to quite common crash causes
that occur in constrained devices and applications written in object oriented programming
languages (Java, Objective-C, and C#).

A second threat to external validity might be related to the generalization of our API

design and implementation recommendations for mobile device embedded systems, based
on a sample coming from a specific platform (i.e. Android). We believe, however, that the
fact that Android is currently the leading platform for mobile applications and devices,
makes the design and implementation decisions for its API to have an impact on its com-
petitors. Given that an application can be written for Android, iOS, and probably Windows
Mobile, the basic design concepts of these platforms’ APIs should be similar. Thus, even
though we need to empirically validate our assumption, we argue that these indicative
recommendations can be considered universally applicable.

Finally, we acknowledge that the data set we used came from specific applications chosen
by our provider, BugSense, and applications that had agreed to send crash reports. This
could make our sample biased. However, the amount of the different crashes even for a
small sample of applications can give a real picture of common crash causes. As future
work, we would like to analyze data from more applications and sources. In addition, we
recognize that our sample contains three months of data, which is a short period of time.
Even though our data set comprised a large number of crashes from different API versions,
we are committed to examine more data from different time windows.

7 Conclusions and Future Work

In this paper we used software telemetry data from Android application crashes to see how
crashes are associated with API deficiencies. We processed approximately a million stack
traces to pinpoint critical API calls by extracting representative signatures, ordering the
signatures according to their frequency, investigating the crash causes associated with our
signatures, and categorizing the causes into eight classes.

Our findings show that the top crash causes can be attributed to memory leaks, race
conditions or deadlocks, or missing resources. However, we were unable to classify the
crash causes for a significant number (more than 10 %) of signatures due to the generic
exceptions associated with them (RuntimeException, NullPointerException)
and inadequate API documentation. These results can help in the design of more resilient
APIs and (for particular crash causes) drive improved implementation.

In addition, we suggested ways to reduce the number of application crashes associ-
ated with API deficiencies by making API design and implementation recommendations for
each crash cause category. We argued that more specific exceptions, non-blocking algo-
rithms, and default resources can eliminate the most frequent crashes. We also suggested
that development tools like memory analyzers, thread debuggers, and static analyzers can
prevent many application failures. Finally, we proposed features of execution platforms
and frameworks related to process and memory management that could reduce application
crashes.

Empir Software Eng

As future work, we aim to analyze crashes from a wider range of platforms, such as those
running the iOS and Windows Mobile operating systems. Thus, we would be able to paint a
broader picture around the API failures that lead mobile applications to crashes. By having
data and results from the three main operating systems for mobile devices, we can validate
our findings and be able to compare these systems from different angles and discuss their
robustness. Additionally, by associating the stack traces from the crashes with the version
of the operating system they happened, we can observe the evolution of the API design and
implementation quality. Also, by analyzing metadata associated with each crash, such as the
mobile operator, the network connectivity type, and the model of the mobile device where
the crash was reported, we could associate crashes with particular hardware and network
configurations. This will allow us to associate software failures with hardware platforms
and model how particular hardware features, such as multi-core processors, affect software
quality. Finally, we would like to validate our categories and recommendations by asking
the mind of Android developers through questionnaires and interviews.

Acknowledgments We would like to thank the founders of BugSense Inc. Panos Papadopoulos and John
Vlachogiannis for the data and information they provided us, as well as Alexandros Kompotis, who down-
loaded and gave us the data set. In addition, we would like to thank Konstantinos Polychronis and Antonis
Lilis for the valuable information they gave us regarding Android application development. Also, we want to
thank Panos Louridas, Georgios Gousios, Marios Fragkoulis, and Vassilios Karakoidas for their suggestions
and internal reviews.

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek
national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF)—Research Funding Program: Thalis—Athens University of Economics and
Business—Software Engineering Research Platform.

Appendix

Here we provide examples of cleaned stack traces that cover cases from the formulae in
Section 3.3.

Table 13 Example of Case 4

F: Framework dalvik.system.NativeStart.main

com.android.internal.os.ZygoteInit.main

com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run

java.lang.reflect.Method.invoke

java.lang.reflect.Method.invokeNative

android.app.ActivityThread.main

android.os.Looper.loop

android.os.Handler.dispatchMessage

android.os.Handler.handleCallback

android.view.View$PerformClick.run
android.view.View.performClick

A: Application com.example.TabsFragmentActivity$2.onClick

I: API android.widget.CompoundButton.setChecked

android.widget.RadioGroup$CheckedStateTracker.onCheckedChanged
android.widget.RadioGroup.access$600

android.widget.RadioGroup.setCheckedId

A: Application com.example.TabsFragmentActivity$4.onCheckedChanged

Empir Software Eng

Table 13 (continued)

I: API android.widget.TabHost.setCurrentTab
android.widget.TabHost.invokeOnTabChangeListener

A: Application com.example.TabManager.onTabChanged

I: API android.support.v4.app.FragmentManagerImpl.executePendingTransactions

android.support.v4.app.FragmentManagerImpl.execPendingActions
android.support.v4.app.BackStackRecord.run

android.support.v4.app.FragmentManagerImpl.attachFragment

android.support.v4.app.FragmentManagerImpl.moveToState

A: Application com.example.DiscussionListFragment.onViewCreated

I: API android.widget.ListView.setAdapter

A: Application com.example.DiscussionAdapter.getCount

E: Exception !java.lang.NullPointerException

Table 14 Example of Case 5

F: Framework dalvik.system.NativeStart.main

com.android.internal.os.ZygoteInit.main

com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run

java.lang.reflect.Method.invoke

java.lang.reflect.Method.invokeNative

android.app.ActivityThread.main

android.os.Looper.loop

android.os.Handler.dispatchMessage

android.view.ViewRoot.handleMessage

com.android.internal.policy.impl.PhoneWindow$-

DecorView.dispatchTouchEvent

android.app.Activity.dispatchTouchEvent

com.android.internal.policy.impl.PhoneWindow.superDispatchTouchEvent

com.android.internal.policy.impl.PhoneWindow$-

DecorView.superDispatchTouchEvent

android.view.ViewGroup.dispatchTouchEvent

android.view.ViewGroup.dispatchTouchEvent

android.view.ViewGroup.dispatchTouchEvent

android.view.ViewGroup.dispatchTouchEvent

android.view.ViewGroup.dispatchTouchEvent

android.view.View.dispatchTouchEvent

A: Application com.example.RepeatingImageButton.onTouchEvent

I: API android.view.View.onTouchEvent

android.view.View.performClick

Empir Software Eng

Table 14 (continued)

A: Application com.example.MediaService$ServiceStub.play

com.example.MediaService.play

com.example.MediaUtils.getGoodArtwork

com.example.MediaUtils.getArtwork

com.example.MediaUtils.getDefaultArtwork

I: API android.graphics.BitmapFactory.decodeStream

android.graphics.BitmapFactory.nativeDecodeAsset

E: Exception !java.lang.OutOfMemoryError

In the following graphs, we present the diagrams for the distribution of the signatures
(total and unique frequencies) among the crash cause categories for each of the examined
APIs.

Fig. 6 Total signatures for Android APIs

Fig. 7 Unique signatures for Android APIs

Empir Software Eng

Fig. 8 Total signatures for Java APIs

Fig. 9 Unique signatures for Java APIs

Fig. 10 Total signatures for third-party library APIs

Empir Software Eng

Fig. 11 Unique signatures for third-party library APIs

References

Aftandilian EE, Kelley S, Gramazio C, Ricci N, Su SL, Guyer SZ (2010) Heapviz: interactive heap visual-
ization for program understanding and debugging. In: Proceedings of the 5th international symposium
on software visualization, ACM, New York, NY, USA, SOFTVIS ’10, pp 53–62

Agarwal R, Wang L, Stoller S (2006) Detecting potential deadlocks with static analysis and run-time monitor-
ing. In: Ur S, Bin E, Wolfsthal Y (eds) Hardware and Software, Verification and Testing, Lecture Notes
in Computer Science, vol 3875. Springer, Berlin Heidelberg, pp 191–207. doi:10.1007/11678779 14

Alsallakh B, Bodesinsky P, Miksch S, Nasseri D (2012) Visualizing arrays in the Eclipse Java IDE. In:
Proceedings of the 2012 16th European Conference on Software Maintenance and Reengineering, IEEE
Computer Society, Washington, DC, USA, CSMR ’12, pp 541–544

Amalfitano D, Fasolino AR, Tramontana P (2011) A GUI crawling-based technique for Android mobile
application testing. In: Proceedings of the 2011 IEEE Fourth International Conference on Software Test-
ing, Verification and Validation Workshops, IEEE Computer Society, Washington, DC, USA, ICSTW
’11, pp 252–261

Amalfitano D, Fasolino AR, Tramontana P, De Carmine S, Memon AM (2012) Using GUI ripping for auto-
mated testing of Android applications. In: Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ACM, New York, NY, USA, ASE, 2012

Artho C, Biere A (2001) Applying static analysis to large-scale multi-threaded Java programs. In: Proceed-
ings of the 13th Australian Conference on Software Engineering, IEEE Computer Society, Washington,
DC, USA, ASWEC ’01, pp 68–75

Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of depend-
able and secure computing. Dependable and Secure Computing, IEEE Trans on 1(1):11–33.
doi:10.1109/TDSC.2004.2

Ayewah N, Hovemeyer D, Morgenthaler J, Penix J, Pugh W (2008) Using static analysis to find bugs. IEEE
Softw 25(5):22–29. doi:10.1109/MS.2008.130

Bacchelli A (2013). Mining challenge 2013: Stack overflow. In: The 10th Working Conference on Mining
Software Repositories

Bacon DF, Cheng P, Grove D (2004) Garbage collection for embedded systems. In: Proceedings of the 4th
ACM international conference on Embedded software, ACM, New York, NY, USA, EMSOFT ’04, pp
125–136

Beizer B (2003) Software Testing Techniques. Dreamtech Press
Bloch J (2006) How to design a good API and why it matters. In: Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems, languages, and applications, ACM, New York,
NY, USA, OOPSLA ’06, pp 506–507

Bond MD, McKinley KS (2008) Tolerating memory leaks. In: Proceedings of the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications, ACM, New York, NY,
USA, OOPSLA ’08, pp 109–126

Bovet D, Cesati M (2005) Understanding The Linux Kernel. Oreilly & Associates Inc
Buse RPL, Weimer W (2012) Synthesizing API usage examples. In: Proceedings of the 2012 Inter-

national Conference on Software Engineering, ICSE 2012. IEEE Press, Piscataway, pp 782–792.
doi:10.1109/ICSE.2012.6227140

http://dx.doi.org/10.1007/11678779_14
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/MS.2008.130
http://dx.doi.org/10.1109/ICSE.2012.6227140

Empir Software Eng

Candes E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Proc Mag 25(2):21–30.
doi:10.1109/MSP.2007.914731

Chang TH, Yeh T, Miller RC (2010) GUI testing using computer vision. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’10, pp 1535–
1544. doi:10.1145/1753326.1753555

Chen G, Kandemir M, Vijaykrishnan N, Irwin MJ, Mathiske B, Wolczko M (2003) Heap compression for
memory-constrained Java environments. In: Proceedings of the 18th annual ACM SIGPLAN confer-
ence on Object-oriented programing, systems, languages, and applications, ACM, New York, NY, USA,
OOPSLA ’03, pp 282–301. doi:10.1145/949305.949330

Chen MC, Chen JL, Chang TW (2011) Android/OSGi-based vehicular network management system. Comput
Commun 34(2):169–183. doi:10.1016/j.comcom.2010.03.032

Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong MY (1992) Orthog-
onal defect classification—a concept for in-process measurements. IEEE Trans Softw Eng 18(11):
943–956

Choe H, Baek J, Jeong H, Park S (2011) MetaService: an object transfer platform between Android applica-
tions. In: Proceedings of the 2011 ACM Symposium on Research in Applied Computation, ACM, New
York, NY, USA, RACS ’11, pp 56–60

Clarke S (2004) Measuring API usability. Dr Dobb’s Journal 29:S6–S9. http://www.drdobbs.com/windows/
184405654

Dang Y, Wu R, Zhang H, Zhang D, Nobel P (2012) ReBucket: a method for clustering duplicate crash
reports based on call stack similarity. In: Proceedings of the 2012 International Conference on Software
Engineering, ICSE 2012. IEEE Press, Piscataway, pp 1084–1093

DeMillo RA, Mathur AP (1995) A grammar based fault classification scheme and its application to the
classification of the errors of TEX. Tech. rep., Citeseer

Eisenstadt M (1997) My hairiest bug war stories. Commun ACM 40(4):30–37. doi:10.1145/248448.248456
Ellis B, Stylos J, Myers B (2007) The factory pattern in API design: a usability evaluation. In: Proceedings of

the 29th international conference on Software Engineering, IEEE Computer Society, Washington, DC,
USA, ICSE ’07, pp 302–312

Enck W, Ongtang M, McDaniel P (2009) Understanding Android security. IEEE Security Privacy 7(1):50–
57. doi:10.1109/MSP.2009.26

Endres A (1975) An analysis of errors and their causes in system programs. SIGPLAN Not 10(6):327–336.
doi:10.1145/390016.808455

Engler D, Ashcraft K (2003) RacerX: effective, static detection of race conditions and deadlocks. SIGOPS
Oper Syst Rev 37(5):237–252. doi:10.1145/1165389.945468

Faghri F, Bazarbayev S, Overholt M, Farivar R, Campbell RH, Sanders WH (2012) Failure scenario as
a service (FSaaS) for Hadoop clusters. In: Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management, ACM, New York, NY, USA, SDMCMM ’12, pp
5:1–5:6

Farooq U, Welicki L, Zirkler D (2010) API usability peer reviews: a method for evaluating the usability
of application programming interfaces. In: Proceedings of the 28th international conference on Human
factors in computing systems, ACM, New York, NY, USA, CHI ’10, pp 2327–2336

Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android permissions demystified. In: Proceedings of
the 18th ACM conference on Computer and communications security, ACM, New York, NY, USA, CCS
’11, pp 627–638

Fraboulet A, Kodary K, Mignotte A (2001) Loop fusion for memory space optimization. In: Proceedings
of the 14th international symposium on Systems synthesis, ACM, New York, NY, USA, ISSS ’01, pp
95–100

Ganapathi A, Patterson D (2005) Crash data collection: a Windows case study. In: Proceedings of the 2005
International Conference on Dependable Systems and Networks, IEEE Computer Society, Washington,
DC, USA, DSN ’05, pp 280–285

Ganapathi A, Ganapathi V, Patterson DA (2006) Windows XP kernel crash analysis. In: LISA, vol 6, pp
49–159

Gavalas D, Economou D (2011) Development platforms for mobile applications: status and trends. IEEE
Softw 28(1):77–86. doi:10.1109/MS.2010.155

Gerken J, Jetter HC, Zöllner M, Mader M, Reiterer H (2011) The concept maps method as a tool to evaluate
the usability of APIs. In: Proceedings of the 2011 annual conference on Human factors in computing
systems CHI ’11. ACM, New York, pp 3373–3382

Gray J (1986) Why do computers stop and what can be done about it? In: Symposium on reliability in
distributed software and database systems, Los Angeles, CA, USA, pp 3–12

http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1145/1753326.1753555
http://dx.doi.org/10.1145/949305.949330
http://dx.doi.org/10.1016/j.comcom.2010.03.032
http://www.drdobbs.com/windows/184405654
http://www.drdobbs.com/windows/184405654
http://dx.doi.org/10.1145/248448.248456
http://dx.doi.org/10.1109/MSP.2009.26
http://dx.doi.org/10.1145/390016.808455
http://dx.doi.org/10.1145/1165389.945468
http://dx.doi.org/10.1109/MS.2010.155

Empir Software Eng

Gross KC, Bhardwaj V, Bickford R (2002) Proactive detection of software aging mechanisms in performance
critical computers. In: Proceedings of the 27th Annual NASA Goddard Software Engineering Workshop
(SEW-27’02). IEEE Computer Society, Washington, pp 17–23

Gross KC, Urmanov A, Votta LG, McMaster S, Porter A (2006) Towards dependability in everyday software
using software telemetry. In: Proceedings of the Third IEEE International Workshop on Engineering of
Autonomic & Autonomous Systems, EASE ’06. IEEE Computer Society, Washington, pp 9–18

Guo P, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predicting which bugs get fixed:
an empirical study of Microsoft Windows. In: ACM/IEEE 32nd International Conference on Software
Engineering, vol 1, pp 495–504. doi:10.1145/1806799.1806871

Havelund K, Pressburger T (2000) Model checking Java programs using Java PathFinder. Int J Softw Tools
Technol Transfer 2:366–381. doi:10.1007/s100090050043

Havelund K, Roşu G (2004) An overview of the runtime verification tool Java PathExplorer. Form Methods
Syst Des 24(2):189–215. doi:10.1023/B:FORM.0000017721.39909.4b

Henning M (2009) API design matters. Commun ACM 52(5):46–56. doi:10.1145/1506409.1506424
Hovemeyer D, Pugh W (2004) Finding bugs is easy. SIGPLAN Not 39(12):92–106.

doi:10.1145/1052883.1052895
Johnson PM, Kou H, Paulding M, Zhang Q, Kagawa A, Yamashita T (2005) Improving software development

management through software project telemetry. IEEE Softw 22(4):76–85
Jula H, Tralamazza D, Zamfir C, Candea G (2008) Deadlock immunity: enabling systems to defend

against deadlocks. In: Proceedings of the 8th USENIX conference on Operating systems design and
implementation, USENIX Association, Berkeley, CA, USA, OSDI’08, pp 295–308. http://dl.acm.org/
citation.cfm?id=1855741.1855762

Jula H, Rensch T, Candea G (2011) Platform-wide deadlock immunity for mobile phones. In: IEEE/IFIP
41st International Conference on Dependable Systems and Networks Workshops (DSN-W), pp 205–210.
doi:10.1109/DSNW.2011.5958814

Kähkönen K, Launiainen T, Saarikivi O, Kauttio J, Heljanko K, Niemelä I (2011) LCT: an open
source concolic testing tool for Java programs. In: Proceedings of the 6th Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’2011), Saarbrücken, Germany,
pp 75–80

Kawrykow D, Robillard M (2009) Detecting inefficient API usage. In: 31st International Conference
on Software Engineering - Companion (ICSE-Companion 2009), pp 183–186. doi:10.1109/ICSE-
COMPANION.2009.5070977

Kim D, Wang X, Kim S, Zeller A, Cheung S, Park S (2011a) Which crashes should I fix first?: Predicting
top crashes at an early stage to prioritize debugging efforts. IEEE Trans Softw Eng 37(3):430–447.
doi:10.1109/TSE.2011.20

Kim H, Lee M, Han W, Lee K, Shin I (2011b) Aciom: application characteristics-aware disk and network
I/O management on Android platform. In: Proceedings of the ninth ACM international conference on
Embedded software EMSOFT ’11. ACM, New York, pp 49–58. doi:10.1145/2038642.2038652

Kim H, Agrawal N, Ungureanu C (2012) Revisiting storage for smartphones. ACM Trans on Storage
8(4):14:1–14:25. doi:10.1145/2385603.2385607

Kim K (2006) A non-blocking buffer mechanism for real-time event message communication. Real-Time
Systems 32:197–211. doi:10.1007/s11241-005-4680-7

Kim S, Zimmermann T, Nagappan N (2011c) Crash graphs: an aggregated view of multiple crashes
to improve crash triage. In: Proceedings of the 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks DSN ’11. IEEE Computer Society, Washington, pp 486–493

Knuth DE (1989) The Errors of TeX. Software: Practice and Experience 19(7):607–685.
doi:10.1002/spe.4380190702

Lee I, Iyer R (1995) Software dependability in the tandem guardian system. IEEE Trans Softw Eng
21(5):455–467. doi:10.1109/32.387474

Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C (2006) Have things changed now? An empirical study of bug
characteristics in modern open source software. In: Proceedings of the 1st workshop on Architectural
and system support for improving software dependability, ACM, New York, NY, USA, ASID ’06, pp
25–33

Liblit B, Aiken A (2002) Building a better backtrace: techniques for postmortem program analysis. Tech.
rep., Berkeley

Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D (2013) API
change and fault proneness: a threat to the success of Android apps. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering ESEC/FSE 2013. ACM, New York, pp 477–487.
doi:10.1145/2491411.2491428

http://dx.doi.org/10.1145/1806799.1806871
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1023/B:FORM.0000017721.39909.4b
http://dx.doi.org/10.1145/1506409.1506424
http://dx.doi.org/10.1145/1052883.1052895
http://dl.acm.org/citation.cfm?id=1855741.1855762
http://dl.acm.org/citation.cfm?id=1855741.1855762
http://dx.doi.org/10.1109/DSNW.2011.5958814
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070977
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070977
http://dx.doi.org/10.1109/TSE.2011.20
http://dx.doi.org/10.1145/2038642.2038652
http://dx.doi.org/10.1145/2385603.2385607
http://dx.doi.org/10.1007/s11241-005-4680-7
http://dx.doi.org/10.1002/spe.4380190702
http://dx.doi.org/10.1109/32.387474
http://dx.doi.org/10.1145/2491411.2491428

Empir Software Eng

Long B, Hoffman D, Strooper P (2003) Tool support for testing concurrent Java components. IEEE Trans
Softw Eng 29(6):555–566. doi:10.1109/TSE.2003.1205182

Maalej W, Robillard MP (2013) Patterns of knowledge in API reference documentation. IEEE Trans Softw
Eng 99(PrePrints):1. doi:10.1109/TSE.2013.12

Maia C, Nogueira LM, Pinho LM (2010) Evaluating Android OS for embedded real-time systems. In: Petters
SM, Zijlstra P (eds) 6th International Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT 2010), Politécnico do Porto, pp 63–70

Maji AK, Hao K, Sultana S, Bagchi S (2010) Characterizing failures in mobile OSes: a case study with
Android and Symbian. In: Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering ISSRE ’10. IEEE Computer Society, Washington, pp 249–258

Mandelin D, Xu L, Bodı́k R, Kimelman D (2005) Jungloid mining: helping to navigate the API jungle.
SIGPLAN Not 40(6):48–61. doi:10.1145/1064978.1065018

McKinley KS, Carr S, Tseng CW (1996) Improving data locality with loop transformations. ACM Trans
Program Lang Syst 18(4):424–453. doi:10.1145/233561.233564

Meijer E, Beckman B, Bierman G (2006) LINQ: reconciling object, relations and XML in the NET frame-
work. In: Proceedings of the 2006 ACM SIGMOD international conference on Management of data
SIGMOD ’06. ACM, New York, pp 706–706. doi:10.1145/1142473.1142552

Mernik M, Heering J, Sloane AM (2005) When and how to develop domain-specific languages. ACM
Comput Surv 37(4):316–344. doi:10.1145/1118890.1118892

van der Merwe H, van der Merwe B, Visse W (2012) Verifying Android applications using Java PathFinder.
SIGSOFT Softw Eng Notes 37(6):1–5. doi:10.1145/2382756.2382797

Michael MM, Scott ML (1996) Simple, fast, and practical non-blocking and blocking concurrent queue algo-
rithms. In: Proceedings of the fifteenth annual ACM symposium on Principles of distributed computing
PODC ’96. ACM, New York, pp 267–275. doi:10.1145/248052.248106

Ongtang M, Butler K, McDaniel P (2010) Porscha: policy oriented secure content handling in Android. In:
Proceedings of the 26th Annual Computer Security Applications Conference ACSAC ’10. ACM, New
York, pp 221–230. doi:10.1145/1920261.1920295

Panda PR, Catthoor F, Dutt ND, Danckaert K, Brockmeyer E, Kulkarni C, Vandercappelle A, Kjeldsberg
PG (2001) Data and memory optimization techniques for embedded systems. ACM Trans Des Autom
Electron Syst 6(2):149–206. doi:10.1145/375977.375978

Payet T, Spoto F (2012) Static analysis of Android programs. Inf Softw Technol 54(11):1192–1201.
doi:10.1016/j.infsof.2012.05.003

Pheatt C (2008) Intel threading building blocks. J Comput Sci Coll 23(4):298–298. http://dl.acm.org/citation.
cfm?id=1352079.1352134

Ploski J, Rohr M, Schwenkenberg P, Hasselbring W (2007) Research issues in software fault categorization.
ACM SIGSOFT Softw Eng Notes 32(6). doi:10.1145/1317471.1317478

Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B (2003) Automated sup-
port for classifying software failure reports. In: Proceedings of the 25th International Con-
ference on Software Engineering 2003. IEEE Computer Society, Washington, pp 465–475.
doi:10.1109/ICSE.2003.1201224

Robillard M, DeLine R (2011) A field study of API learning obstacles. Empir Softw Eng 16(6):703–732.
doi:10.1007/s10664-010-9150-8

Robillard M, Bodden E, Kawrykow D, Mezini M, Ratchford T (2013) Automated API property inference
techniques. IEEE Trans Softw Eng 39(5):613–637. doi:10.1109/TSE.2012.63

Robillard MP (2009) What makes APIs hard to learn? Answers from developers. IEEE Softw 26(6):27–34.
doi:10.1109/MS.2009.193

Schoeberl M (2004) Restrictions of Java for embedded real-time systems. In: Proceedings of the Seventh
IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2004, pp 93–100.
doi:10.1109/ISORC.2004.1300334

Sen K, Agha G (2006) CUTE and jCUTE: concolic unit testing and explicit path model-checking tools In:
CAV. Springer, pp 419–423

Seo J, Choi B, Yang S (2011) A profiling method by PCB hooking and its application for mem-
ory fault detection in embedded system operational test. Inf Softw Technol 53(1):106–119.
doi:10.1016/j.infsof.2010.09.003

Shabtai A, Fledel Y, Kanonov U, Elovici Y, Dolev S, Glezer C (2010) Google Android: a comprehensive
security assessment. IEEE Security Privacy 8(2):35–44. doi:10.1109/MSP.2010.2

Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012) “Andromaly”: a behavioral malware detection
framework for Android devices. J Intell Inf Syst 38(1):161–190. doi:10.1007/s10844-010-0148-x

Shelton C, Koopman P, Devale K (2000) Robustness testing of the Microsoft Win32 API. In: Proceed-
ings of the International Conference on Dependable Systems and Networks. DSN 2000, pp 261–270
doi:10.1109/ICDSN.2000.857548

http://dx.doi.org/10.1109/TSE.2003.1205182
http://dx.doi.org/10.1109/TSE.2013.12
http://dx.doi.org/10.1145/1064978.1065018
http://dx.doi.org/10.1145/233561.233564
http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1145/2382756.2382797
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/1920261.1920295
http://dx.doi.org/10.1145/375977.375978
http://dx.doi.org/10.1016/j.infsof.2012.05.003
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dx.doi.org/10.1145/1317471.1317478
http://dx.doi.org/10.1109/ICSE.2003.1201224
http://dx.doi.org/10.1007/s10664-010-9150-8
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1109/MS.2009.193
http://dx.doi.org/10.1109/ISORC.2004.1300334
http://dx.doi.org/10.1016/j.infsof.2010.09.003
http://dx.doi.org/10.1109/MSP.2010.2
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1109/ICDSN.2000.857548

Empir Software Eng

Shi L, Zhong H, Xie T, Li M (2011) An empirical study on evolution of API documentation. In: Gian-
nakopoulou D, Orejas F (eds) Fundamental Approaches to Software Engineering, Lecture Notes in
Computer Science, vol 6603. Springer, Berlin, pp 416–431. doi:10.1007/978-3-642-19811-3 29

Shihab E, Kamei Y, Bhattacharya P (2012) Mining challenge 2012: The Android platform. In: The 9th
Working Conference on Mining Software Repositories

de Souza C, Bentolila D (2009) Automatic evaluation of API usability using complexity metrics and visu-
alizations. In: 31st International Conference on Software Engineering - Companion, (ICSE-Companion
2009), pp 299–302. doi:10.1109/ICSE-COMPANION.2009.5071006

Sproull R, Waldo J (2014) The API performance contract. Queue 12(1):10:10–10:20. doi:10.1145/
2576966.2576968

Stylos J (2009) Making APIs More Usable with Improved API Designs, Documentation and Tools. Carnegie
Mellon University. http://books.google.co.uk/books?id=MQYoWv0nsy8C

Stylos J, Clarke S (2007) Usability implications of requiring parameters in objects’ constructors. In: Proceed-
ings of the 29th international conference on Software Engineering ICSE ’07. IEEE Computer Society,
Washington, pp 529–539. doi:10.1109/ICSE.2007.92

Stylos J, Myers BA (2008) The implications of method placement on API learnability. In: Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of software engineering SIGSOFT
’08/FSE-16. ACM, New York, pp 105–112. doi:10.1145/1453101.1453117

Sullivan M, Chillarege R (1991) Software defects and their impact on system availability—a study of field
failures in operating systems. In: 21st International Symposium Fault-Tolerant Computing, FTCS-21.
Digest of Papers, p 29. doi:10.1109/FTCS.1991.146625

Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2013) Bug characteristics in open source software. Empirical
Software Engineering pp 1–41. doi:10.1007/s10664-013-9258-8

Tulach J (2012) Practical API Design: Confessions of a Java Framework Architect. Apressus Series, Apress.
http://books.google.co.uk/books?id=5DmYpwAACAAJ

Vallina-Rodriguez N, Crowcroft J (2013) Energy management techniques in modern mobile handsets. IEEE
Communications Surveys Tutorials 15(1):179–198. doi:10.1109/SURV.2012.021312.00045

Valois JD (1995) Lock-free linked lists using compare-and-swap. In: Proceedings of the fourteenth annual
ACM symposium on Principles of distributed computing PODC ’95. ACM, New York, pp 214–222.
doi:10.1145/224964.224988

Vaughan-Nichols SJ (2001) Technology news. Computer 34(12):22–24. doi:10.1109/2.970549
Xie T, Pei J (2006) MAPO: mining API usages from open source repositories. In: Proceedings of the 2006

international workshop on Mining software repositories MSR ’06. ACM, New York, pp 54–57
Yang L, Dick RP, Lekatsas H, Chakradhar S (2010) Online memory compression for embedded systems.

ACM Trans Embed Comput Syst 9(3):27:1–27:30. doi:10.1145/1698772.1698785
Yang T, Hertz M, Berger ED, Kaplan SF, Moss JEB (2004) Automatic heap sizing: taking real memory into

account. In: Proceedings of the 4th international symposium on Memory management ISMM ’04. ACM,
New York, pp 61–72. doi:10.1145/1029873.1029881

Maria Kechagia received the BSc degree in Management Science and Technology from Athens University
of Economics and Business and the MSc degree in Computing (Software Engineering) from Imperial College
London. She is currently a PhD candidate in the Department of Management Science and Technology, in
Athens University of Economics and Business. Her research interests include the evaluation of Application
Programming Interfaces (APIs) and the study of open source software. She is an IEEE and ACM member
and an official writer for the XRDS:Crossroads blog of the ACM.

http://dx.doi.org/10.1007/978-3-642-19811-3_29
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071006
http://dx.doi.org/10.1145/2576966.2576968
http://dx.doi.org/10.1145/2576966.2576968
http://books.google.co.uk/books?id=MQYoWv0nsy8C
http://dx.doi.org/10.1109/ICSE.2007.92
http://dx.doi.org/10.1145/1453101.1453117
http://dx.doi.org/10.1109/FTCS.1991.146625
http://dx.doi.org/10.1007/s10664-013-9258-8
http://books.google.co.uk/books?id=5DmYpwAACAAJ
http://dx.doi.org/10.1109/SURV.2012.021312.00045
http://dx.doi.org/10.1145/224964.224988
http://dx.doi.org/10.1109/2.970549
http://dx.doi.org/10.1145/1698772.1698785
http://dx.doi.org/10.1145/1029873.1029881

Empir Software Eng

Dimitris Mitropoulos is a Postdoctoral Researcher at Columbia University. He holds a BSc in Informatics
and Telecommunications from the National and Kapodistrian University of Athens, an MSc in Information
Systems from the Athens University of Economics and Business and a PhD in Cyber Security from the
Athens University of Economics and Business. He has worked in the industry as a software engineer and
has been involved in several EU funded R&D projects. He is an IEEE member, a member of SysSec, and
an official writer for the XRDS:Crossroads blog of ACM. His research interests include application security,
intrusion detection systems, static code analysis and software evolution.

Diomidis Spinellis is a Professor in the Department of Management Science and Technology at the Athens
University of Economics and Business, Greece. His research interests include software engineering, IT
security, and programming languages. He has written two award-winning, widelytranslated books: “Code
Reading” and “Code Quality: The Open Source Perspective”. Dr. Spinellis has also published more than
200 technical papers in journals and refereed conference proceedings, which have received more than 2000
citations. He is a member of the IEEE Software editorial board, authoring the regular “Tools of the Trade”
column. He has contributed code that ships with Mac OS X and BSD Unix and is the developer of UMLGraph
and other open-source software packages, libraries, and tools. He holds an MEng in Software Engineering
and a PhD in Computer Science, both from Imperial College London. Dr. Spinellis is as an elected member
of the IEEE Computer Society Board of Governors (2013-2015), and a senior member of the ACM and the
IEEE. From January 2015 he will be serving as the Editor-in-Chief for IEEE Software.

	Charting the API minefield using software telemetry data
	Abstract
	Introduction
	Related Work
	Software Telemetry
	Crash Cause Analysis
	Categorization Approaches
	Impact
	Mining Techniques

	API Evaluation
	Usability
	Documentation Learnability

	Reliability Analysis in Android

	Methods
	Data Provenance and Description
	Data Cleaning
	Locating Risky API Calls
	Validation of the Experimental Method
	Identification of Risky API Methods in Real Applications
	Verification of the Risky API Methods
	Location of the Extracted Signatures in Public Sources
	Conclusions

	Results and Analysis
	Primary Observations
	Observation 1: Distribution of Method and Class Names
	Observation 2: Distribution of Exceptions
	Observation 3: Categorization of Calls Among Layers
	Observation 4: Top API Method Exceptions
	Observation 5: Top Root Exceptions
	Observation 6: Top API Methods and Crashes

	Crash Cause Categories
	Memory Exhaustion (ME)
	Race Condition or Deadlock (SYNC)
	Missing or Corrupt Resource (MR)
	Indexing Problem (IND)
	Insufficient Permission (SEC)
	Invalid Format or Syntax (FORM)
	Connectivity Problems (CON)
	Unclassified (U)

	Crash Mitigating Recommendations for APIs, Tools, and Frameworks
	API Recommendations
	Memory Exhaustion
	Race Condition or Deadlock
	Missing or Corrupt Resource
	Indexing Problem
	Invalid Format or Syntax
	Insufficient Permission
	Connectivity Problem
	Unclassified

	Development Tools
	Profiling Tools
	Testing Tools
	Static Checking Tools

	Execution Platforms and Frameworks
	Process Management
	Memory Management

	Threats to Validity
	Internal Validity
	External Validity

	Conclusions and Future Work
	Acknowledgments
	Appendix 1
	References

